
Certifying Checksum-Based Logging in the
RapidFSCQ Crash-Safe Filesystem

by

Stephanie Wang

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2016

c○ Massachusetts Institute of Technology 2016. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

May 20, 2016

Certified by. .
Dr. Frans Kaashoek

Charles Piper Professor
Thesis Supervisor

Certified by. .
Dr. Nickolai Zeldovich

Associate Professor
Thesis Supervisor

Accepted by .
Dr. Christopher Terman

Chairman, Masters of Engineering Thesis Committee

2

Certifying Checksum-Based Logging in the RapidFSCQ

Crash-Safe Filesystem

by

Stephanie Wang

Submitted to the Department of Electrical Engineering and Computer Science
on May 20, 2016, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

As more and more software is written every day, so too are bugs. Formal verification
is a way of using mathematical methods to prove that a program has no bugs. How-
ever, if formal verification is to see widespread use, it must be able to compete with
unverified software in performance. Unfortunately, many of the optimizations that
we take for granted in unverified software depend on assumptions that are difficult to
verify. One such optimization is data checksums in logging systems, used to improve
I/O efficiency while still ensuring data integrity after a crash.

This thesis explores a novel method of modeling the probabilistic guarantees of
a hash function. This method is then applied to the logging system underlying
RapidFSCQ, a certified crash-safe filesystem, to support formally verified checksums.
An evaluation of RapidFSCQ shows that it enables end-to-end verification of appli-
cation and filesystem crash safety, and that RapidFSCQ’s optimizations, including
checksumming, achieve I/O performance on par with Linux ext4. Thus, this thesis
contributes a formal model of hash function behavior with practical application to
certified computer systems.

Thesis Supervisor: Dr. Frans Kaashoek
Title: Charles Piper Professor

Thesis Supervisor: Dr. Nickolai Zeldovich
Title: Associate Professor

3

4

Acknowledgments

Five years ago, when I first came to MIT as a freshman who didn’t even know what

a computer program looked like, I never thought a day like this would come. I found

a community at MIT like no other, and the first place where I truly felt I belonged.

First to Frans and Nickolai, for introducing me to a new world. They were my

first introduction to computer systems back when I had figured out what a program

looked like but didn’t know what to do with that information. This year, they showed

me what a vision looks like and how to make that vision happen. I could not have

asked for a better introduction to research. I leave MIT this year knowing that I will

have their support wherever I go.

I also owe thanks to Frans and Nickolai, and especially to Haogang Chen, for the

many other lines of proof that went into RapidFSCQ. RapidFSCQ is much more

than a checksum-based log, and much more than this thesis. Indeed, I would not

have this thesis today if it wasn’t for Haogang’s mastery of the logging system.

I have many good friends to thank for being there along the way and for making me

laugh at an inappropriate volume. Thank you to Neha, the one and only bridgetroll in

my life; Josh, my personal assistant; Zac and David, my other two thirds; Bennett, my

buddy; Jaimit [sic], Nadia, Denis, Nikki, Max, Leigh, Dario, and the others of Burton

Third. Thank you also to my G9 pals, James, who overdelivered; and Shoumik, the

antisocial barista.

Finally, thank you to Mommy, Daddy, and Jie, to whom I am more grateful than

I ever show. They may not always agree on what I should do, but they have always

supported me on what I choose to do.

5

6

Contents

1 Introduction 11

1.1 Modeling hash collisions . 12

1.2 Verifying checksums in a crash-safe log 14

1.3 Outline . 15

2 Related Work 17

2.1 Modeling hash collisions . 17

2.2 File-system verification . 18

2.3 Application bugs . 19

3 Modeling hash collisions 21

3.1 Execution semantics . 22

3.2 Specification . 23

3.3 Hash subsets . 25

3.4 Modeling checksums . 27

4 Logging with checksums 31

4.1 PulsarFS Overview . 32

4.1.1 Specification . 33

4.1.2 Implementation . 36

4.2 Checksummed log implementation . 40

4.3 Checksummed log specification . 43

7

5 Evaluation 49

5.1 What bugs are prevented? . 49

5.1.1 ext4 bugs case study. 50

5.2 I/O performance . 51

5.3 Are PulsarFS specs correct and useful? 53

5.3.1 fsstress. 53

5.3.2 Enumerating crash states. 53

5.3.3 Certifying an application. 54

6 Conclusion 55

8

List of Figures

3-1 Small-step semantics for the Hash operation. 23

3-2 Specification for the Hash operation. 24

3-3 A simple program that compares two hashes. 24

3-4 Inductive definition of the hash_list relationship in Coq. 27

3-5 The checksum program. 29

4-1 The FSCQ commit procedure. 31

4-2 Combined lines of code and proof for PulsarFS components 33

4-3 Pseudocode for a crash-safe application. 34

4-4 The PulsarFS log. 37

4-5 DiskLog pseudocode, without checksumming. 39

4-6 DiskLog layout, without checksumming. 39

4-7 CHL specification for DiskLog append. 40

4-8 DiskLog layout, with checksumming. 41

4-9 DiskLog pseudocode, with checksumming. 42

4-10 DiskLog state diagram. 44

4-11 CHL specification for DiskLog recover, with checksumming. 45

5-1 ext4 bug case study. 50

5-2 PulsarFS I/O performance. 51

9

10

Chapter 1

Introduction

It’s becoming clearer than ever that the current methods for guaranteeing software

correctness are not enough. Most industry programmers rely on code reviews, test-

ing, and occasionally static analysis to eliminate bugs. Unfortunately, none of these

methods are exhaustive. Other methods of detecting bugs like model checking take

a prohibitively long time on complex systems and have no way of producing an ex-

ecutable that is guaranteed to match the model [44]. Nuanced bugs can and do slip

through the cracks, sometimes with disastrous results.

Filesystems in particular suffer from subtle bugs that, when combined with a crash

at an inopportune time, can lead to critical data loss or data disclosure [27, 13]. This

can be catastrophic for applications such as databases that depend on filesystems to

persist data across crashes in a consistent manner.

Formal verification can be applied to filesystems to both specify and prove crash

consistency, as shown in the FSCQ [9] filesystem. FSCQ is groundbreaking in that

it guarantees a precisely defined disk state consistent with application behavior after

any possible crash interleaving. However, the write-ahead log that the filesystem is

built atop is too simple to achieve good performance, and in fact the FSCQ filesystem

performs many times slower than the extensively optimized but unverified Linux ext4.

Before verification can see widespread use in practical systems, we must show that it

is feasible to achieve performance comparable with that of unverified systems.

11

ext4 offers several different mounting options for logging optimizations, such as

group commit and checksumming. These features provide good performance by maxi-

mizing I/O efficiency. Unfortunately, these optimizations also increase the complexity

of the logging system, making properties like crash safety difficult to reason about.

For example, a bug that only appeared when two mounting options were simultane-

ously turned on could cause data thought to be deleted to resurface after a crash [27].

If we could formally verify the sophisticated optimizations offered by ext4, we could

prevent such bugs and achieve high performance. However, the assumptions that

these optimizations depend on are hard to formalize and verify, as evidenced by the

bugs that appear when we assume incorrectly.

In this thesis, I focus on checksumming, a common logging feature that improves

I/O efficiency of transactions while still ensuring data integrity after a crash. The

challenge in this project is twofold. First, there is the problem of modeling hash

function behavior in a sound way, described in chapter 3. Second, the hashing model

must be incorporated into an actual logging system to support checksums, described

in chapter 4. These two problems are described in more detail in the following two

sections.

1.1 Modeling hash collisions

The core idea of data checksumming depends on the low probability of collision in

the hash function we choose. Briefly, whenever writing data to disk, we also write its

corresponding checksum. Then, when recovering from a crash, we read out the data

stored on disk, compute its checksum, and then check it against the checksum written

to disk from before the crash. If the checksums match, then with high probability,

the data we read out after the crash is the same as the data we wrote to disk before

the crash.

However, there is a very small but nonzero probability that even when the check-

sums do match, the inputs were different. This is true of any hash function, since

12

by definition, a hash function is a mapping of arbitrarily large inputs to a fixed-size

output. In practice, the probability of a hash collision is so low that we can ignore it.

Still, we must account for it in our model of hash function behavior. If we ig-

nored it by stating an axiom that our hash function has no collisions, this would be

unsound, meaning that we introduced a statement that implies logical False. Since

False implies any statement, we would no longer be able to guarantee anything of

value; all statements would be trivially true. Conversely, if we went so far as to to

reason about the degree of collision resistance of a hash function, we’d quickly become

trapped into reasoning about probabilities and specific hash function properties that

are irrelevant to actual program execution.

The challenge is then how to succinctly capture a hash function’s “mostly injective”

nature without introducing any false axioms. The key idea is to treat hash collisions

as function non-termination in the formal execution semantics. More specifically, in

our formal definition of hash function execution, if we encounter a hash collision, then

the abstract program enters an infinite loop. Otherwise, we simply return the hash

value. In a dependently typed proof language like Coq, we can only prove guarantees

for terminating programs [22]. By defining execution semantics in this way, we’re

able to prove that if a hash function does return, a collision could not have happened.

Then, at any point in program execution, if we see two matching hash outputs, we

can further reason that they must have come from the same inputs, or else there

would’ve been a collision earlier in the execution that prevented us from reaching the

current point.

We describe the precise definition of our hash function model in chapter 3, but

the essential idea is to keep ghost state, or state used to supplement proofs but that

never materializes during execution, to keep track of any hash inputs seen so far. To

determine whether there is a hash collision, we look up the hash input in the list of

inputs seen so far, using a data structure that we call a hashset.

To apply the same idea towards systems that can crash, we must be able to

extend this model to hold across some formal definition of a crash. Otherwise, we

would encounter the same problem while trying to verify a recovery procedure. During

13

recovery, the checksum that we compare against comes from an input hashed before

the crash. Thus, in order to be sure that there are no hash collisions, we must

track the hashset across all crashes. To simplify reasoning across program execution

execution and potential crashes, we introduce the idea of hash_subset, a relationship

that states that one hashset is a subset of another.

Finally, we use these low-level execution details to specify and implement pro-

grams that perform useful hashing operations, such as comparing two hash values or

computing the of a list of values. These basic procedures demonstrate the practical-

ity of the hashing model and are instrumental to supporting checksums in a logging

system.

1.2 Verifying checksums in a crash-safe log

A write-ahead log works by writing transactions to the log at commit time, and then

later applying the transactions to the data, e.g., the disk. It must account for the

possibility that a crash occurs during a write to the log. In this case, upon restart,

the log could contain a mixture of committed entries and garbage data. Typically,

a recovery procedure is run to distinguish between these and to re-apply any valid

committed entries. This requires careful ordering of disk writes and write barriers

when appending to the log. For example, in the relatively simple FSCQ design,

the log inserts a write barrier between writing log entries to disk and writing the

corresponding commit metadata to the log header. This ensures that no matter

where the append procedure may crash, the log data corresponding to the commit

metadata in the header will already be on disk. In particular, the recovery procedure

will see either the old metadata, whose corresponding log entries will still be on disk

because the log is append-only, or the new metadata, in which case the extra write

barrier ensures that the new transaction will be on disk.

This design is easy to reason about, but performs poorly because of the extra

write barrier required per transaction. A more sophisticated design could use data

checksums to remove this extra write barrier. At a high level, the logging system

14

would write new log entries and commit metadata, including the new checksum,

together to disk before flushing all outstanding writes. In this design, we’re still able

to guarantee the same crash safety properties because the recovery procedure can

compare the checksum of the data on disk against the checksum in the header on disk

to determine whether the data is valid.

The primary challenge is to design a write-ahead log that internally uses checksums

to support the same guarantees as a log like FSCQ’s: that committed entries are

never lost and that garbage data is not mistaken for committed entries. Meanwhile,

we also want to keep the interface simple. The write-ahead log is a relatively low-level

component of a filesystem, since it is the component that reads and writes directly

from the disk. Therefore, we want to keep the details of checksum support contained

to the write-ahead log, so that other filesystem components can continue to use such

a log without modification.

Our target is the logging system that underlies RapidFSCQ, a verifiably crash-

safe filesystem that extends FSCQ with optimizations similar to those of ext4. We

describe one scheme for modifying the RapidFSCQ log and its recovery procedure

to use data checksums, with minimal changes required for higher-level code. With

checksum support, we can show that RapidFSCQ reaches I/O efficiency on par with

ext4.

1.3 Outline

In chapter 2, I discuss the work done so far in formally verified systems and mod-

eling hash function behavior. In the remaining chapters, I discuss my three main

contributions:

∙ chapter 3: A formal model of hash function behavior that is both logically sound

and easy to use when reasoning about program execution and crashes.

∙ chapter 4: A verified checksum-based logging design, integrated into the RapidF-

SCQ crash-safe filesystem.

15

∙ chapter 5: An evaluation of RapidFSCQ with checksumming, demonstrating

I/O efficiency competitive with ext4 and end-to-end crash safety with an appli-

cation.

16

Chapter 2

Related Work

The work described in this thesis will ultimately go towards RapidFSCQ, the first

file system with a machine-checked proof of crash safety with state-of-the-art logging

optimizations, including checksums, and a specification that precisely captures the

behavior of both fsync and fdatasync POSIX system calls. The rest of this chapter

relates prior work to our technique for modeling hash collisions with crashes, as well

as RapidFSCQ as a whole.

2.1 Modeling hash collisions

The work done so far on modeling hash collisions has not been practical enough to

apply to a logging system. The Dolev-Yao model [14] assumes that hash collisions

cannot happen by treating hashes symbolically. However, this does not allow us to

reason about actual executable code, where a hash value is a concrete sequence of

bits that can be written to disk.

Work on formalizing cryptographic protocols has explored how to model collision-

resistant hash functions. For example, the RF* verification-oriented programming

language [5] maintains, as auxiliary state, a mutable global dictionary from hashes

to their inputs. This dictionary includes only the inputs already used in the current

program execution, where an error is signaled if a new hash request leads to a colli-

sion in this dictionary. We build on this idea of treating hash collisions as program

17

non-termination and extend it to handle crashes by reasoning about subsets of hash

histories.

2.2 File-system verification

There has been significant progress on machine-checked proofs of file-system correct-

ness. The two most recent results are FSCQ [9] and Cogent [3]. FSCQ verifies an

entire file system, albeit with a synchronous specification that does not allow for de-

ferred writes. Cogent generates highly efficient executable code for a file system, and

supports deferred writes, but lacks a specification and proof for the entire file system.

The RapidFSCQ prototype builds on top of FSCQ, and as a result, suffers from CPU

overheads due to extracting code to Haskell. RapidFSCQ could benefit from using

the DSL approach from Cogent to generate more efficient code and reduce the size of

the trusted computing base.

Neither FSCQ, Cogent, nor other prior work on file-system verification [25, 17,

6, 26, 4, 38, 20, 18, 7, 15, 16, 26] use RapidFSCQ’s technique for formally modeling

hash collisions.

Efforts to find bugs in file-system code have been successful in reducing the number

of bugs in real-world file systems and other storage systems [42, 43, 41, 24, 29].

However, these approaches cannot guarantee the absence of bugs, especially during

recovery.

FSCQ’s Crash Hoare Logic (CHL) is particularly important to this work. CHL

is a variation of Hoare logic [21], a formal method commonly used to specify and

verify programs. Hoare logic allows us to specify a program’s correctness in terms

of pre- and post-conditions. To prove a program’s correctness, we show that if some

precondition 𝑃 holds before entering the program, then a postcondition 𝑄 must hold

after exiting the program. We can verify the postconditions of larger programs by

chaining single operations together and showing that each postcondition fulfills the

next operation’s precondition. This method of chaining proofs together also lends

itself well to proof automation, which is crucial for verifying large systems.

18

Hoare logic is a powerful system for expressing correct program behavior, but it

is not sufficient to prove correctness of a program in the event of a disk crash. This

is because Hoare only allows a program’s correctness to be defined by its pre- and

post-conditions, while a crash can stop program execution at any time.

FSCQ addressed this gap by extending traditional Hoare logic with crash-conditions,

in addition to the conventional pre- and post-conditions, to produce CHL. In contrast

to postconditions, crash-conditions must be proven to hold true after any single com-

mand in a program, since a crash could occur at any of these points. Crash-conditions

are the link between a disk crash and the recovery procedure, allowing us to specify

and prove the outcome of a sequence of program execution, crash, and recovery.

2.3 Application bugs

It is widely acknowledged that it is easy for application developers to make mistakes

in ensuring crash safety for application state [32]. For instance, a change in the ext4

file system implementation changed the observable crash behavior of the file system,

as far as the application could see. This led to many applications losing data after

a crash [12, 19], due to a missing fsync call needed to ensure that the contents of a

new file are flushed to disk [8]. The ext4 developers, however, maintained that the

file system never promised to uphold the earlier behavior, so this was an application

bug. Similar issues crop up with different file-system options, which often lead to

different crash behavior [32]. In chapter 5, we demonstrate the first end-to-end verified

application and file system.

19

20

Chapter 3

Modeling hash collisions

Formal verification of checksums requires a logically sound model of hash function

behavior that allows us to prove that if we see two matching hashes, their inputs must

be equal. In general, we cannot assume this is true, given the theoretically possible

but practically unlikely event of a hash collision. On the other hand, if we chose to

explicitly account for any hash collisions, we would have to reason about the internals

of the hash function we chose. This would force us to take on a large overhead in

proof work that is in all likelihood irrelevant to actual program execution.

Our solution is to define our execution semantics to account for the possibility of

a hash collision. We describe our definition of hashing semantics, written in the Coq

proof assistant [11] and CHL framework [9], in section 3.1. Essentially, whenever a

hash collision is encountered, we exit normal program execution and enter an infinite

loop.

Since our proofs reason only about program executions that terminate, we can

thus directly infer from our execution semantics that there are no hash collisions. In

section 3.2, we specify and prove these basic correctness guarantees.

In section 3.3, we describe how to build on these basic specifications to specify

similar guarantees about hash collisions for larger programs. We also describe how

to keep specifications lightweight, so that we can automate proofs for programs that

don’t need to make explicit guarantees about specific hash values.

21

Finally, in section 3.4, we provide abstractions, as well as matching implementa-

tions, that allow us to reason about the hashes of lists of values. This abstraction will

serve as a useful primitive for building a certified checksum-based log, which must

hash across a series of disk blocks.

3.1 Execution semantics

The basis of the CHL framework is a set of opcodes that describe primitive operations

on the disk, such as reading and writing a single block. The execution semantics define

what each of these opcodes means with respect to the disk state. We can define

conditions for execution in this way. For example, to execute a Read(a) operation,

the disk must have some value 𝑣 at address 𝑎 and the return value of the operation

is then specified to be 𝑣.

To support our model of hash collisions, we define a new opcode, Hash(k), con-

ditional on the value 𝑘. Specifically, if 𝑘 doesn’t collide with any other input we’ve

seen so far, Hash(k) returns the hash of 𝑘, according to some hash function ℎ. Other-

wise, the program enters an infinite loop and fails to terminate. We keep some extra

state in a data structure called a hashset to track the hash inputs that we’ve seen

throughout program execution.

Note that this definition of execution semantics is only an abstraction that is

leveraged for proof work; the actual program extracted from the Coq implementation

would continue executing whether or not there were any hash collisions. Similarly,

the hashset state is only an abstraction used to facilitate proofs. Lookups of past

hash inputs never actually happen during program execution and therefore add no

memory or CPU overhead.

This also means that there is a chance that actual program execution could diverge

from the execution defined by our formal semantics, i.e., the actual program would

continue executing while the abstract program would loop forever on a hash collision.

In this case, we could no longer guarantee the same specifications about the actual

22

program execution after that point. Fortunately, the probability of this event is

negligible as long as we use a collision-resistant hash function.

The hashset data structure is a map from hash values, or outputs of a hash function

ℎ, to keys, or inputs to ℎ. Key-value pairs are only ever added to the hashset, never

deleted. Keys are also never overwritten, unless by the same value at that key already

in the hashset.

We keep a single hashset across an entire program execution. The semantics of

a Hash(k) operation are defined according to this hashset, shown in Figure 3-1. We

check if a Hash(k) operation is safe or not by looking up ℎp𝑘q in the hashset. If ℎp𝑘q

is not in the hashset, then we’ve never hashed 𝑘 or any other colliding key before.

If ℎp𝑘q already points to 𝑘 in the hashset, then we are hashing a value we’ve seen

before. In either case, there is no hash collision, so it is safe to return the hash of

𝑘. We always update the hashset with the entry pℎp𝑘q, 𝑘q when returning from the

Hash operation, and the disk remains unchanged. The crash semantics are relatively

simple: the hashset remains unchanged after recovering from a crash.

ℎ𝑠rℎp𝑘qs “ 𝑘 _ ℎ𝑠rℎp𝑘qs “ None
`

𝑚, ℎ𝑠, 𝐻𝑎𝑠ℎp𝑘q; return
˘

Ñ
`

𝑚, ℎ𝑠rℎp𝑘q :“ 𝑘s, return ℎp𝑘q
˘

Figure 3-1: Small-step semantics for the Hash opcode. 𝑚 is the disk state, ℎ𝑠 is the
hashset state, and return is a continuation function that binds the return value of
Hash(k) to the rest of the program.

3.2 Specification

The operational semantics described in section 3.1 are enough to specify and verify

a simple Hoare specification for a Hash(k) operation, shown in Figure 3-2. The

precondition is True, signifying that the Hash operation can be called at any time

on any key. The postcondition has three parts: (1) the value returned is ℎp𝑘q; (2)

the key 𝑘 is safe with respect to the initial hashset, i.e., 𝑘 does not collide with any

23

SPEC Hash(k)
PRE:ℎ𝑠𝑃𝑅𝐸 True
POST:ℎ𝑠𝑃𝑂𝑆𝑇 𝑟𝑒𝑡 “ ℎp𝑘q

Ź

`

ℎ𝑠𝑃𝑅𝐸rℎp𝑘qs “ None _ ℎ𝑠𝑃𝑅𝐸rℎp𝑘qs “ 𝑘
˘

Ź

ℎ𝑠𝑃𝑂𝑆𝑇 “ ℎ𝑠𝑃𝑅𝐸rℎp𝑘q :“ 𝑘s

CRASH:ℎ𝑠𝐶𝑅𝐴𝑆𝐻 ℎ𝑠𝐶𝑅𝐴𝑆𝐻 “ ℎ𝑠𝑃𝑅𝐸

Figure 3-2: Specification for the Hash operation. The ℎ𝑠 variables refer to the hashsets
at different points in the program execution: before, after, or during a crash.

previous input; and (3) the final hashset is the initial one, updated with the pair

pℎp𝑘q, 𝑘q. Note that the condition of hash collision safety is in the postcondition, not

the precondition. This is because the Hoare specification only applies to terminating

programs, so our proof can assume that hashing 𝑘 does not cause a collision and

therefore it must have been safe according to the initial hashset. We can prove

the post-condition using the small-step semantics defined in Figure 3-1. The crash-

condition simply states that the hashset at the time of the crash is equal to the initial

hashset, which is trivial to prove since a crash in a single-operation program can only

occur before the operation returns.

def compare(k1, k2):
h1 = Hash(k1)
h2 = Hash(k2)
if (h1 == h2):

return True
else:

return False

(a) Pseudocode.

SPEC compare(k1, k2)
PRE True
POST ret = True ðñ k1 = k2
CRASH True

(b) Specification.

Figure 3-3: A simple program that compares two hashes.

Once we have the specification for the Hash operation, we can chain it together

with other operations to produce larger programs. To demonstrate the injectivity of

the Hash operation on single values, we present pseudocode for a simple program in

Figure 3-3a. The program takes in two input values, calls Hash on each, and returns

24

True or False depending on whether the hash values are equal. Using the Hash

specification, we can prove that the boolean returned by the program also represents

whether the input values were equal. This is captured in the post-condition of the

program specification, shown in Figure 3-3b.

We outline a sketch of the proof as follows. Let 𝑘1 and 𝑘2 be the two input values.

After executing Hash(𝑘1), the initial hashset is updated with the pair pℎp𝑘1q, 𝑘1q,

according to postcondition (3) of Hash. We’ll call this intermediate hashset ℎ𝑠. After

executing Hash(𝑘2), we know that 𝑘2 does not cause any hash collisions with respect

to ℎ𝑠, according to postcondition (2) of Hash.

There are two cases to consider: either the hashes are equal and we return True,

or the hashes are not equal and we return False. In the first case, we know that

ℎ𝑠rℎp𝑘1qs “ 𝑘1 by definition of ℎ𝑠. Since 𝑘2 is safe with respect to ℎ𝑠, there are two

possibilities, ℎp𝑘2q is not in ℎ𝑠 or ℎ𝑠rℎp𝑘2qs “ 𝑘2. Since ℎp𝑘1q “ ℎp𝑘2q and ℎp𝑘1q is

in ℎ𝑠, it must be the latter. Then, by substitution, 𝑘1 “ 𝑘2. In the second case, we

can simply use the fact that ℎ is a function to show that ℎp𝑘1q ‰ ℎp𝑘2q implies that

𝑘1 ‰ 𝑘2. In both cases, we have shown that the hashes are equal if and only if the

input values are equal.

3.3 Hash subsets

Although it is necessary to the injectivity proof to state the exact mutations to the

hashset in the Hash operation’s postcondition, for the typical program, we only need

to remember facts about certain entries in the hashset. To allow us to state these

facts concisely without having to reason about the entire history of hashset updates,

we use the idea of 𝑠𝑢𝑏𝑠𝑒𝑡𝑠. One hashset is the subset of another if and only if the

latter has every entry in the former.

This definition has a few advantages. First, by stating for all programs that the

hashset in the post- and crash-conditions must be a superset of the initial hashset, we

can effectively abstract away the specific updates to the hashset. This is especially

useful for stating crash-conditions, which must describe the state at any point during

25

the program execution. For example, in a program that uses five different Hash

operations, there are six possible hashsets if the program crashes, one for the initial

hashset and one each after every Hash operation. It is undesirable to have to list

out each of these possible hashsets in the crash-condition. Instead, we can simply

state that the hashset at the time of the crash is some superset of the original, and

selectively state propositions about the keys that we want to remember.

One subtlety is that even though the hashset does not actually change during a

crash, this weaker crash specification allows the program to add any keys not already

in the hashset in between program crash and program recovery. Although this does

not affect any keys that we explicity state propositions about at the time of the crash,

since keys are never deleted or overwritten, one may think that this implicitly allows

for false hash collisions in the future. However, as long as the execution semantics do

not actually add any more keys to the hashset during a crash, we can safely assume

that the program execution will not encounter a false hash collision.

Second, specifications stated in this way are easy to automate, given the transitiv-

ity of the hashset-subset property. For a program that calls some number of functions

in sequence, each of which guarantees the subset property in its postcondition, we

simply chain together the subset relationships until we can prove that the final hash-

set is indeed a supserset of the original. For example, if ℎ𝑠0 is the initial hashset, ℎ𝑠1

is the hashset after running program 𝑝1, and ℎ𝑠2 is the hashset after running program

𝑝2, we can prove that ℎ𝑠0 is a subset of ℎ𝑠2 using ℎ𝑠0 Ď ℎ𝑠1 Ď ℎ𝑠2.

Finally, propositions about specific keys in a hashset can easily be carried across

the subset relationship. This is because any key that we’ve already seen with respect

to a hashset will still be safe to hash with respect to any superset. This is critical for

maintaining information about the checksum across crashes. In particular, we must

preserve the list of inputs that we hashed to compute the on-disk checksum so that

we can compare it to the on-disk log data after a crash.

26

3.4 Modeling checksums

Although the specifications we’ve defined so far are enough to prove injectivity of

single values, we’d also like to prove injectivity for lists of values, since a checksum

should be able to represent multiple log entries. To do this, we first formalize a

standard method for computing a checksum that chains together a list of inputs into

a single hash value. The value zero, again the size of one disk block, serves as the

default initial key. The checksum of a list of 𝑖 inputs is defined as:

𝑐ℎ𝑒𝑐𝑘𝑠𝑢𝑚𝑖 “

$

’

&

’

%

ℎp𝑐ℎ𝑒𝑐𝑘𝑠𝑢𝑚𝑖´1 || 𝑘𝑖q, if 𝑖 ą 0

ℎp0q, else

Using this definition, we can define an inductive relationship in Coq called hash_list,

which relates a hash value, a list of hash inputs, and a hashset, shown in Figure 3-4.

The inputs could be arbitrarily sized, but for our use case, we assume that they are

each the size of one disk block.

Inductive hash_list : list -> hash -> hashset -> Proposition :=
| HL_nil : forall checksum hs,

hs[h(0)] = 0 ->
hash_list [] h(0) hs

| HL_cons : forall l checksum x hs,
hash_list l hl hs ->
hs[h(checksum || x)] = checksum || x ->
hash_list (l ++ [x]) h(checksum || x) hs.

Figure 3-4: Inductive definition of the hash_list relationship in Coq.

The hash_list relationship closely follows the definition of 𝑐ℎ𝑒𝑐𝑘𝑠𝑢𝑚𝑖 given above,

but also requires that all checksums computed are safe with respect to the given

hashset. Specifically, if we look up any checksum in ℎ𝑠, we will get the corresponding

input to the hash function. Similar to how the hashset was used in section 3.1 to prove

27

injectivity for single values, the hashset is also necessary here to prove injectivity for

multiple values.

We can use this relationship to prove injectivity of hash_list on lists of inputs,

assuming the same hashset. In other words, if the checksums and hashsets are equal,

then the lists of inputs must also be equal. First, we will prove a couple helper

lemmas. The first states that for any hash_list relationship, ℎp0q must point to 0

in the hashset. The second states that no other list besides the empty list has the

default hash value as its checksum. This second lemma is important because it allows

us to prove that we will not mistakenly lose entries, thinking that the length of the

log is zero when it isn’t.

Lemma 3.4.1 Let hash_list hold for p𝑙, 𝑐, ℎ𝑠q. Then, ℎ𝑠rℎp0qs “ 0.

Proof By induction on the hash_list relation.

Lemma 3.4.2 Let 𝑙 be a non-empty list, and assume that hash_list holds for p𝑙, 𝑐, ℎ𝑠q.

Then, 𝑐 ‰ ℎp0q.

Proof By contradiction. Assume that 𝑐 “ ℎp0q. Since 𝑙 is non-empty, in order

for hash_list to hold for p𝑙, 𝑐, ℎ𝑠q, there must exist some previous checksum 𝑐1 and

element 𝑥 in 𝑙 such that ℎ𝑠rℎp0qs “ 𝑐1||𝑥. But, by Lemma 3.4.1, ℎ𝑠rℎp0qs “ 0.

Since 0 and 𝑥 are both the size of one disk block, there cannot exist a 𝑐1 such that

𝑐1||𝑥 “ 0.1

Now, we can define a lemma stating injectivity of the hash_list relationship,

assuming the same hashset:

Lemma 3.4.3 Let 𝑙1 and 𝑙2 be two lists of hash inputs. For some checksum 𝑐 and

hashset ℎ𝑠, assume that the hash_list relation holds for p𝑙1, 𝑐, ℎ𝑠q and p𝑙2, 𝑐, ℎ𝑠q.

Then, 𝑙1 “ 𝑙2.
1A more standard way of computing the checksum is to prepend a single 1-bit to 𝑐1||𝑥, which

allows us to prove the same fact that there exists no 𝑐1 such that 1||𝑐1||𝑥 “ 0 without having to
depend on word sizes. Still, it is most likely safe to depend on word sizes for correctness, since the
practical probability of a hash function producing a zero checksum 𝑐1 is very low.

28

Proof By induction on the hash_list relation.

The base case is when 𝑙1 is an empty list and 𝑐 “ ℎp0q. Then, by Lemma 3.4.2,

the only possible value for 𝑙2 is the empty list, so 𝑙1 “ 𝑙2.

Next, we want to show that for any 𝑘1 and 𝑘2, if hash_list holds for p𝑙1 `` r𝑘1s, 𝑐, ℎ𝑠q

and p𝑙2 `` r𝑘2s, 𝑐, ℎ𝑠q, then 𝑙1 `` r𝑘1s “ 𝑙2 `` r𝑘2s.

Note that there must have been two previous checksums 𝑐1 and 𝑐2 that correspond

to 𝑙1 and 𝑙2, respectively, such that 𝑐 “ ℎp𝑐1||𝑘1q and 𝑐 “ ℎp𝑐2||𝑘2q. By definition of

hash_list, ℎ𝑠r𝑐s “ 𝑐1||𝑘1 and ℎ𝑠r𝑐s “ 𝑐2||𝑘2. Since 𝑐1 and 𝑐2 have the same number of

bits, we can conclude that 𝑐1 “ 𝑐2 and 𝑘1 “ 𝑘2.

Since the checksums 𝑐1 and 𝑐2 are equal, then by induction, 𝑙1 “ 𝑙2.

def checksum(c, keys):
for i in range(len(keys)):

c = Hash(c || keys[i])
return c

(a) Pseudocode.

SPEC checksum(𝑐, 𝑙1)
PRE:ℎ𝑠𝑃𝑅𝐸 hash_list p𝑙, 𝑐, ℎ𝑠𝑃𝑅𝐸q

POST:ℎ𝑠𝑃𝑂𝑆𝑇 hash_list p𝑙 `` 𝑙1, 𝑟𝑒𝑡, ℎ𝑠𝑃𝑂𝑆𝑇 q

LOOP:ℎ𝑠𝐿𝑂𝑂𝑃 , 𝑖, 𝑐 hash_list p𝑙 `` 𝑙1r: 𝑖s, 𝑐, ℎ𝑠𝐿𝑂𝑂𝑃 q

CRASH:ℎ𝑠𝐶𝑅𝐴𝑆𝐻 True

(b) Specification.

Figure 3-5: The checksum program. The loop invariant refers to the current hashset,
loop variable 𝑖, and loop return variable 𝑐.

Finally, we demonstrate a program that computes the checksum of a list of inputs

using the Hash operation, shown in Figure 3-5. The program takes in a starting

checksum and list of inputs and repeatedly hashes the concatenated checksum and

next input. The specification guarantees that if hash_list holds for the given starting

checksum and some list 𝑙, then hash_list will hold for the final checksum returned by

the function and the list 𝑙 appended with the given list of inputs.

29

The checksum correctness proof requires some discussion of loop invariants in the

context of hashing semantics. The for-loop body is generally parametrized on a loop

variable, e.g., the index 𝑖 into the list of hash inputs. For-loops are executed by

repeatedly executing the body until the loop variable reaches some condition, e.g.,

the length of the list. Since hashing semantics record a single hashset across all of

program execution, every loop program must additionally parametrize each iteration

of the loop with a hashset. This allows us to prove the loop invariant that the current

hashset is a superset of the initial hashset, which is necessary to prove the hashset

subset postcondition.

Proving the checksum program’s postcondition requires a more specific loop in-

variant on the hashset, defined formally in Figure 3-5b. In this case, the loop invariant

is that the current checksum computed must match the list of inputs hashed so far,

according to the hash_list relation. The precondition of checksum directly implies

the loop invariant before entering the for-loop, while the loop invariant directly im-

plies the postcondition. To prove that the loop invariant holds from one iteration of

the loop to the next, we simply use the postcondition of the Hash operation to prove

that hash_list holds for the next checksum and input.

With these building block programs proven, we are ready to design a fully de-

veloped logging system that guarantees data integrity using checksums, discussed in

chapter 4.

30

Chapter 4

Logging with checksums

The FSCQ log’s commit procedure follows a design similar to ext4’s data=journal

mode in order to ensure data integrity in the log. This can be seen in the FSCQ [9]

pseudocode, adapted in Figure 4-1 to highlight the code that can be optimized using

data checksums. Specifically, before applying the commit, the FSCQ log writes the log

entries to disk, flushes all outstanding writes to disk, writes the commit metadata to

the log header, and flushes again. By separating the log entries and commit metadata

writes with a disk flush barrier, FSCQ ensures that no matter where the log update

procedure may crash, if the recovery procedure tries to recover the commit, then the

correct log data is already on disk.

def log_commit():
logHeader = log_flush()
if logHeader is None: return False
disk_sync()
disk_write(COMMITBLOCK, logHeader)
disk_sync()
log_apply()
disk_sync()
logHeader.len = 0
disk_write(COMMITBLOCK, logHeader)
disk_sync()
inMemoryLog = {}
return True

Figure 4-1: The FSCQ commit procedure. The highlighted disk_sync can be removed
using checksumming.

31

Checksumming improves I/O efficiency by removing the write barrier between

writing the log entries and the log header. In this chapter, we apply the formaliza-

tions developed in chapter 3 towards supporting log checksums in an existing verified

logging system, the RapidFSCQ log. RapidFSCQ is a crash-safe filesystem that pro-

vides a precise specification for the POSIX fsync and fdatasync calls. The core of

the filesystem is the RapidFSCQ log, a highly optimized write-ahead log.

In section 4.1, we give an overview of the RapidFSCQ interface and logging design.

The RapidFSCQ log includes sophisticated optimizations such as group commit and

deferred application of log entries, which further reduce the number of write barriers

per transaction. Due to the complexity of the RapidFSCQ logging optimizations, it is

necessary to keep the system as modular as possible. At a high level, the RapidFSCQ

log is separated into several logical layers built on top of each other, each of which is

responsible for certain optimizations.

Our goal is to incorporate checksums into the RapidFSCQ logging design with

minimal modifications to other layers. In section 4.2, we describe the implementation

modifications required. These include the modifications to the on-disk layout of the

log, as well as the procedures to recover and append to the log.

Finally, we describe the specification changes required in each layer in section 4.3.

The majority of these changes go towards accounting for the addition of a new invalid

log state, in which the data in the log does not match the checksum in the header.

4.1 RapidFSCQ Overview

RapidFSCQ is an I/O-efficient filesystem with a precise specification for crash safety.

All of RapidFSCQ, including its specifications, implementation, and proofs, are writ-

ten in the Coq proof assistant. This has two benefits. First, it allows us to use

the same environment to write all parts of RapidFSCQ. Second, it ensures that our

proofs are checked by the Coq proof assistant, giving us strong confidence in their

correctness. RapidFSCQ runs on Linux using the FUSE interface. Following FSCQ’s

approach, RapidFSCQ’s implementation is extracted from Coq into Haskell code,

32

and compiled into a user-space FUSE server. Figure 4-2 shows the lines of code for

different components of RapidFSCQ, including the modifications required for check-

summing. The proofs are complete, and guarantee that RapidFSCQ’s implementation

meets its specification. The total development effort took 4 people one year. In the

rest of this section, we describe the RapidFSCQ specification and optimizations, not

including checksumming.

Component Lines of code

FSCQ and CHL infrastructure 19,220
Hashing semantics 460
General data structures 3,615
Buffer cache 1,267
Write-ahead log 10,190
Inodes and files 2,907
Directories 5,470
RapidFSCQ’s top-level API 1,750

Total 44,879

Figure 4-2: Combined lines of code and proof for RapidFSCQ components

4.1.1 Specification

The POSIX standard is notoriously vague on what crash-safety guarantees file-system

operations provide. A particular concern is the guarantees provided by fsync and

fdatasync, which give applications fine-grained control over what data the file system

flushes to persistent storage. Unfortunately, file systems provide imprecise promises

on exactly what data is flushed, and, in fact, for Linux ext4 file system it depends

on the options that an administrator specifies when mounting the file system [32].

Because of this lack of precision, applications such as databases and mail servers,

which try hard to make sequences of file creates, writes, and renames crash-safe by

inserting fsyncs and fdatasyncs in the sequence, may still lose data when the file

system it is running on crashes at an inopportune time [45, 8].

33

tmpfile = "crashsafe.tmp"

def crash_safe_update(filename, data_blocks):
f = open(tmpfile, "w")
for block in data_blocks:
f.write(block)

f.close()

fdatasync(tmpfile)
rename(tmpfile, filename)
fsync(dirname(filename))

def crash_safe_recover():
unlink(tmpfile)

Figure 4-3: Pseudocode for an application library that updates the contents of a file
in a crash-safe manner.

For example, Figure 4-3 shows how a prototypical application uses fsync and

fdatasync, in combination with other file-system API calls, to update a file in a

crash-safe manner. This pattern shows up in many real applications, such as a mail

server, a text editor, a database, etc. Of course, prior research has shown that file

systems provide different crash semantics [32, 8], so our example may be not crash-

safe on some file systems, and crash-safe on others. Nonetheless, we will explain why a

developer might expect it to be crash-safe; this code also happens to be crash-safe on

a file system that satisfies the RapidFSCQ specification. Our example code assumes

that the application never runs this function concurrently.

crash_safe_update(f, data) ensures that, after a crash, file f will have either its

old contents or the new data; it will not have a mixture of old and new data, or partial

new data, or any other intermediate state. To ensure this property, crash_safe_update

first writes the new data into a temporary file. A file system might bypass the journal

when writing the new data to the file’s data blocks; this is a common optimization

implemented by Linux ext4 among others, which we call log bypass. Many file systems

also implement writeback caching, so the new data may not have been written to the

file’s data block yet.

34

Once crash_safe_update has finished writing data to the temporary file, it invokes

fdatasync to force the file system to flush any buffered changes to the temporary file’s

data blocks from the writeback cache out to disk (and to issue a disk write barrier).

After fdatasync returns, crash_safe_update replaces the original file with the new

temporary file using rename. Since the file system’s rename is atomic with respect to

crashes, and the temporary file’s contents are already on disk, if the system crashes

at this point, the application will observe either the original contents (of the old file)

or the new contents (of the new file). Finally, crash_safe_update uses fsync to flush

its change to the directory, so that upon return, an application can be sure that the

new data will survive a crash.

If the system crashes while executing crash_safe_update, it must first execute the

file system’s recovery code (which may replay transactions that have been committed

but not applied), followed by its own recovery code. In our example, the application-

specific recovery code crash_safe_recover simply deletes the temporary file if one

exists. This is sufficient for our example, since if the temporary file exists, we must

have crashed in the middle of crash_safe_update, and thus the original file still has

its old contents.

RapidFSCQ provides a precise specification for the fsync and fdatasync system

calls, allowing an application such as crash_safe_update to prove its own correctness.

Briefly, the specification guarantees that in the event of a crash, the disk after recovery

will reflect a complete and in-order prefix of all metadata updates up until the crash.

This specification provides a clear contract between applications and a file system.

Ensuring metadata ordering helps developers reason about the possible states of the

directory structure after a crash: If some operation survives a crash, then all preceding

operations must have also survived. For instance, in the crash_safe_update function

from Figure 4-3, the developer knows that all directory changes have been flushed

to disk once fsync(dirname(filename)) returns. Notably, this includes any possible

pending changes to parent directories as well: for instance, if the application had just

created the parent directory prior to calling crash_safe_update.

35

4.1.2 Implementation

The RapidFSCQ specification strikes a reasonable balance between ease of use for

application programmers and allowing file systems to implement optimizations that

provide high I/O performance. RapidFSCQ supports three optimizations besides log

checksumming, which is described in the remainder of this chapter:

1. Group commit: Transactions are batched when appended to the on-disk log,

reducing the number of disk flushes needed to persist each transaction.

2. Deferred writes: The log waits until it is full to apply all the transactions in the

log to the disk at once, rather than applying each transaction individually with

disk flushes in between.

3. Log bypass: Writes can bypass the log and go directly to disk without be-

ing committed as part of a transaction. Bypassed writes are handled by the

RapidFSCQ log abstraction, but are not written to the on-disk log.

The key idea behind verifying a system as complex as the RapidFSCQ log is one

familiar from building the unverified equivalent: modularity. The RapidFSCQ log is

divided into four logical layers: LogAPI, GroupCommit, Applier, and DiskLog, shown

in Figure 4-4. Here, we briefly describe the functionality of each layer and focus on

DiskLog, the layer for which we’ll provide checksum support.

LogAPI, the uppermost layer, exposes an interface with a single active transac-

tion, and allows higher-level code (i.e., the file system) to read and write disk blocks.

Writing blocks builds up an in-memory transaction, which is passed to the Group-

Commit layer once the higher-level code invokes commit. LogAPI exposes the size of

the transaction in its specification, and guarantees that transactions below a certain

size will be able to commit. This is important for proving that some system calls,

such as unlink, never fail as a result of running out of log space.

GroupCommit accepts committed transactions from LogAPI and implements group

commit by buffering them in memory. GroupCommit also exposes a flush function,

which flushes the in-memory transactions to the on-disk log. This allows the file

36

Figure 4-4: The RapidFSCQ log.

system to implement the fsync system call by flushing all metadata changes from

GroupCommit to disk. GroupCommit’s specification also allows it to flush transac-

tions to disk on its own at any time. GroupCommit can choose to merge all buffered

transactions into a single transaction, or it can flush them one at a time to disk if the

single transaction is too large.

Applier manages the data part of the disk (i.e., everything but the log) by applying

the log entries to the disk and truncating when the log fills up. While there is still room

on the disk for more transactions to be written, Applier buffers unapplied writes in

memory. By deferring the application of log entries, Applier is able to absorb repeated

writes to the same address in multiple on-disk transactions.

DiskLog implements the on-disk log, without checksumming. It provides only two

functions: append and truncate, pseudocode shown in Figure 4-5. append durably

appends a given transaction to the on-disk log, using a design similar to FSCQ’s

37

commit procedure in Figure 4-1. truncate returns the log to length zero, allowing

Applier to remove applied entries. DiskLog also exposes the size of the on-disk log

to guarantee to Applier that transactions of a certain size will fit and thus be able to

commit.

Recovery is relatively simple in RapidFSCQ. LogAPI exposes a read-only recov-

ery procedure that rebuilds all layers’ in-memory state, shown in Figure 4-5. Since

DiskLog’s append function uses a disk-write barrier to order the log entries before the

log header, it is safe for the recovery procedure to read out all on-disk log entries

without checking for data corruption. Thus, the procedure simply recovers all layers’

in-memory state by reading out the log entries on disk.

The on-disk log abstracted by the DiskLog layer consists of three regions: the log

header, descriptor, and data, shown in Figure 4-5. The log header stores the length

of the list, which we use to determine how many valid entries there are. Each entry

in the log consists of a disk block address and a value to update the corresponding

block. The disk block addresses are stored in the descriptor region, with many packed

into a single disk block, while the values are stored in the data region in the same

order.

The interface exposed by each layer of the logging system consists of the methods

allowed and the layer’s possible states. The specification for each method is stated in

terms of the layer’s possible states. DiskLog exposes three possible states to Applier:

Synced, Truncating, and Extending. These states also take a list of log entries as

an argument, representing the current entries on disk, but we will only include this

argument when necessary for clarity. Each layer builds its own state definitions out

of the states of the layer below. For example, Applier has a state called Applying that

is defined as either DiskLog’s Synced or Truncating states; either Applier is applying

the log updates to disk, or it has finished and is cleaning up the applied entries.

Synced is the stable state, in which there are no outstanding writes to disk, and

the number of entries in the on-disk log match the length in the header. Truncating

is the state when we’ve just written the length of the log to be zero, but haven’t yet

flushed the disk. Extending is the state when we’ve just written the new length of

38

Applier’s collapsed map of unapplied updates.
allFlushedTxns = {}

Called by Applier layer after applying log to disk.
def log_truncate(txn):

logHeader = disk_read(COMMITBLOCK)
logHeader.len = 0
disk_write(COMMITBLOCK, logHeader)
disk_barrier_wait()

Called by Applier layer, which must guarantee that
there’s enough space.
def log_append(txn):

logHeader = disk_read(COMMITBLOCK)
i = logHeader.len
for (a, v) in txn.iteritems():

disk_write(LOGSTART + i, (a, v))
allFlushedTxns[a] = v
i = i + 1

disk_barrier_wait()
logHeader.len = logHeader.len + len(txn)
disk_write(COMMITBLOCK, logHeader)
disk_barrier_wait()

Recovers Applier’s in-memory state.
def log_recover():

logHeader = disk_read(COMMIT_BLOCK)
for i in range(0, logHeader.len):

(a, v) = disk_read(LOGSTART + i)
allFlushedTxns[a] = v

Figure 4-5: DiskLog pseudocode, without checksumming.

Figure 4-6: DiskLog layout, without checksumming.

39

the log, but haven’t yet flushed the disk. Note that in the Extending state, the new

log data has already been flushed completely to disk, so if the new header makes it

to disk, it will be consistent with the log data.

The most interesting case of state transition is during the append call, whose CHL

specification is shown in Figure 4-7. In this case, we could crash before we write the

new length of the header, in which case we may lose the new data that we wrote to

disk, but we’ll crash in a stable state. Otherwise, we may crash during the write of

the new length to the header, the Extending state. Then, we may restart after the

crash with either the old length or the new length in the header.

SPEC append(txn)
PRE Synced l
POST Synced (l `` txn)
CRASH Synced l _ Extending l txn

Figure 4-7: CHL specification for DiskLog append. 𝑙 is the list of log entries currently
on disk, while 𝑡𝑥𝑛 is the transaction we want to append.

4.2 Checksummed log implementation

To support checksumming in the RapidFSCQ log, we make two modifications to the

on-disk log layout, highlighted in Figure 4-8. First, we add a checksum field to the

header. Second, we add a previous_length field, which represents the length of the

log immediately before the most recent append call. previous_length is necessary

for recovery, so that we do not lose the entire log of transactions when only the last

transaction appended is corrupted by the crash. With these additional fields, the

header can still fit in a single disk block, so we assume that writes to multiple fields

of the header are atomic.

Next, we describe the modifications required for each of the two existing DiskLog

methods, truncate and append, as well as a new recover method implemented at the

DiskLog level. The pseudocode for each is shown in Figure 4-9.

40

Figure 4-8: DiskLog layout, with checksumming.

truncate without checksumming already worked by writing the log header to

return the log length to zero. Checksumming requires only an additional write to the

log header to update the checksum to ℎp0q, the default initial hash value.

append is more complex. First, we remove the write barrier between writing the

log entries to disk and the log header. Next, we use the checksum method defined in

section 3.4 to hash the current checksum stored in the header with all of the block

values for the new transaction.1 We write this new checksum to the log header.

Finally, we shift out the current length to previous_length and replace it with the

new length, including the appended transaction.

The RapidFSCQ recovery procedure requires the most modification. Previously,

the log could never crash to an inconsistent state and therefore DiskLog did not

even include a recover operation, as the disk was read-only during recovery. With

checksumming, the log may be corrupted and no longer match the on-disk checksum

after restarting from a crash. We introduce a DiskLog recover method that modifies

the disk to return the log to a consistent state (i.e., Synced). Upper logging layers can

call DiskLog’s recover function and then continue as before to recover any in-memory

state.

First, recover compares checksums to determine if the log is corrupt or not. The

procedure reads the length from the header and reads that many log entries from

disk. It computes their checksum using the checksum method and compares it against

1For simplicity, we actually store two separate checksums, one each for the descriptor and data
regions.

41

allFlushedTxns = {}

def log_truncate(txn):
logHeader = disk_read(COMMITBLOCK)
logHeader.checksum = hash(0)
logHeader.previous_len = logHeader.len
logHeader.len = 0
disk_write(COMMITBLOCK, logHeader)
disk_barrier_wait()

def log_append(txn):
logHeader = disk_read(COMMITBLOCK)
i = logHeader.len
for (a, v) in txn.iteritems():

disk_write(LOGSTART + i, (a, v))
allFlushedTxns[a] = v
logHeader.checksum =
hash(logHeader.checksum || a || v)

i = i + 1
logHeader.previous_len = logHeader.len
logHeader.len = logHeader.len + len(txn)
disk_write(COMMITBLOCK, logHeader)
disk_barrier_wait()

def log_recover():
logHeader = disk_read(COMMIT_BLOCK)
checksum = hash(0)
for i in range(0, logHeader.len):

(a, v) = disk_read(LOGSTART + i)
checksum = hash(checksum || a || v)

if checksum != logHeader.checksum:
checksum = hash(0)
for i in range(0, logHeader.previous_len):

(a, v) = disk_read(LOGSTART + i)
checksum = hash(checksum || a || v)

logHeader.checksum = checksum
logHeader.len = logHeader.previous_len
disk_write(COMMITBLOCK, logHeader)
disk_barrier_wait()

for i in range(0, logHeader.len):
(a, v) = disk_read(LOGSTART + i)
allFlushedTxns[a] = v

Figure 4-9: DiskLog pseudocode, with checksumming.

42

the checksum value stored in the on-disk header. If the two checksums are different,

recover must recover to a previously valid state.

recover uses the previous_length value stored on disk to recover to a previous

log state. It reads out the first previous_length log entries on disk and computes

their checksum. It writes this checksum value and previous_length as the new value

for length in the header. Finally, it uses a write barrier to bring the log back into

a Synced state. At this point, upper layers may continue the recovery process as if

without checksums.

4.3 Checksummed log specification

With the addition of checksum support in the low-level DiskLog, we’d like to promise

the same guarantees and interface for the top-level LogAPI. This involves modifying

each logging layer’s specification to account for checksumming and reproving the new

specifications. In this section, we show that we can keep most of the modifications

contained to the DiskLog layer.

There are two primary modifications necessary to the DiskLog specification. First,

we add propositions to each of the possible DiskLog states guaranteeing that the

checksum in the header matches the log entries on disk. Most of these propositions are

hash_list relations between the checksum in the header, the list of entries on disk, and

a given hashset. The hashset is passed into the DiskLog state representation function

as a part of program specification. For example, Synced previously required that

there was some list 𝑙 of log entries that was completely synced on disk, whose length

matched the value of length in the log header. With the addition of checksums,

it now also requires that hash_list holds for p𝑙, 𝑐, ℎ𝑠q, where 𝑐 is the value of the

checksum field in the log header and ℎ𝑠 is the current hashset.

Second, we define two new DiskLog states. Most of the possible states that a

checksummed DiskLog could be in are already covered by the states introduced in

section 4.1. However, since recovery in the non-checksummed DiskLog was a read-

only operation, there are checksummed DiskLog states possible during recovery that

43

Figure 4-10: State diagram for DiskLog append and recover procedures. The dotted
edges represent a crash and restart. Note that all states crash to either Synced or
Rollback, the precondition for recover. Also, any path made up of recover and crash
edges can only end in a single Synced state, demonstrating idempotency.

have no equivalent non-checksummed states. These can appear when recovering from

a crash during a append operation, as demonstrated by the state machine in Figure 4-

10.

The first of these states is Rollback, which like Synced, represents a disk with

no outstanding writes. Unlike Synced, however, Rollback states that the on-disk log

entries do not match the checksum in the header. DiskLog can restart the disk in

this state if a crash occurs during an append operation after writing the log data

and header, but before syncing the disk. In this case, the new log header may make

it to disk after the crash without the new log data. Synced and Rollback are both

parametrized by a list of log entries, which both promise is on disk. However, whereas

the log header matches this list in the Synced state, it does not in Rollback. The

Rollback list is the most recent log state when the header did match the log data,

which the DiskLog recover method will eventually recover to.

It is surprisingly tricky to correctly define the fact that the on-disk checksum does

not match the on-disk log entries in the Rollback state. The most obvious way is to

directly state that the on-disk checksum is not equal to the checksum of the on-disk log

data, but this turns out to be impossible to prove according to our hashing execution

semantics. Even though we have enough information to say what the checksum of the

on-disk log data would be, that information may not yet exist in the current hashset,

44

since there is no guarantee that the data that the disk restarts with is data that we’ve

previously passed through the Hash operation.

This particular definition doesn’t work because of our inability to guess before

recovery has started whether the data on disk would collide with some previously

hashed value; we cannot know that there was no collision until after the recovery

procedure and all relevant Hash operations have returned. Thus, the only way we

can define the checksum mismatch is by reasoning directly about the input values

themselves. In other words, we must explicitly state that the on-disk blocks are

different from the transaction we should have appended to the log, i.e., the original

argument to the append call made right before the crash. Only then can we guarantee

that the checksum we compute from the log data will not match the checksum on

disk.

The second additional state is Recovering, which is exactly the same as Rollback,

except that the log header block has an outstanding write. This is the write done by

recover to return the log to a consistent state.

Outside of these changes, the checksummed DiskLog specification differs from that

of RapidFSCQ DiskLog only after a crash, since that is when data corruption may oc-

cur. Fortunately, this means that the proofs for non-recovery operations require little

to no modification after the addition of checksums. The extra hash_list propositions

can be easily proven using the postcondition of the checksum method.

SPEC recover()

PRE:ℎ𝑠𝑃𝑅𝐸 Synced l ℎ𝑠𝑃𝑅𝐸 _ Rollback l ℎ𝑠𝑃𝑅𝐸

POST:ℎ𝑠𝑃𝑂𝑆𝑇 Synced l ℎ𝑠𝑃𝑂𝑆𝑇

CRASH:ℎ𝑠𝐶𝑅𝐴𝑆𝐻 Synced l ℎ𝑠𝐶𝑅𝐴𝑆𝐻 _

Rollback l ℎ𝑠𝐶𝑅𝐴𝑆𝐻 _

Recovering l ℎ𝑠𝐶𝑅𝐴𝑆𝐻

Figure 4-11: CHL specification for DiskLog recover, with checksumming.

The recover operation, on the other hand, is entirely new. Its specification is given

in Figure 4-11. The precondition says that recovery can be run only on a log 𝑙 that’s

in a consistent state, or else a log that, based on the mismatching on-disk values,

45

we know should be rolled back to a previous log 𝑙. The postcondition guarantees

that whichever state we start in, the log will be in a consistent state, with matching

checksum, and entries 𝑙 on disk. The crash-condition says that we either crash at

the beginning of the program, or else we crash while in the Recovering state. This

represents the period when the recovery procedure tries to restore a Rollback state to

the Synced state.

The recovery specification guarantees a final, precise log state. For this to be

useful, we need to prove that all other operations crash to a state that satisfies the

recover precondition, i.e., either Synced or Rollback. The interesting cases are the

crashes during append and recover, represented by the dotted edges in Figure 4-10.

The CHL specifications given in Figure 4-7 and Figure 4-11 are both for the state of

the disk immediately before the crash, the source of the edges in the state diagram.

We must analyze each case to prove that the state of the disk after the crash, the

destination of the edges, satisfies the recover precondition.

According to the specification in Figure 4-7, append(txn) can crash in the (Synced l)

or (Extending l txn) states, where 𝑙 is the list of log entries already synced to disk

and txn is the log entries we want to append. Clearly, the Synced l case satisfies the

recover precondition.

Recall that the (Extending l txn) state includes outstanding writes to disk, includ-

ing the log entries in txn and the matching new log header. There are three possible

cases for what combination of these writes will make it to disk after the crash:

1. The new log header does not make it to disk. Since the log entries previously

on disk were not affected, the old log header is still consistent with the rest of

the log, so we are in (Synced l).

2. The new log header makes it to disk, but not all of the txn data. The data on

disk is not equal to the data in txn, so we are in (Rollback l).

3. The new log header and txn data both make it to disk. The checksum is

consistent with the data on disk, so we are in (Synced (l `` txn)).

46

The nontrivial case for a crash during recover, specified in Figure 4-11, is the

(Recovering l) case. Recall that this is the (Rollback l) case, but with an outstanding

write to the log header that matches 𝑙, the previous log entries on disk. There are

two cases for the on-disk log state after the crash:

1. The write does not make it to disk. The original header, whose checksum did

not match the log data, is still on disk, so we are in (Rollback l).

2. The write does make it to disk. The log header now includes the length of 𝑙 as

the length field and the correct checksum, since we computed it by reading 𝑙

out from disk, so we are in (Synced l).

We can also use this case analysis to prove idempotency of the recovery procedure.

Specifically, if we crash during an operation and then crash any number of times

during the recovery procedure, we want to show that we will always recover to the

same log state. This is easy to see by tracing the cycle between Rollback and Recovery

formed by the recover and crash transitions in the state diagram in Figure 4-10.

Finally, we examine the modifications necessary to the specifications of the higher-

level logging layers to account for the changes in DiskLog. The original DiskLog

states, those that do not appear during DiskLog’s recovery procedure, abstract away

the details of checksumming and remain unchanged besides the addition of a hashset

argument. Since the specifications and proofs for the upper layers’ non-recovery

operations are built out of these DiskLog states, there are no changes necessary for

these operations above the DiskLog layer.

For recovery, since the upper layers now call the new DiskLog recover method

before executing their own recovery procedures, there are two modifications necessary.

The first is the addition of a state equivalent to DiskLog’s Rollback state in each of

the upper layers’ preconditions for recovery, to match DiskLog’s recover specification.

This is relatively simple, since we just add a Rollback state in each of the upper layers

and define it to be the Rollback state of the layer below. For each layer’s recovery

method, we also add Rollback as a possible branch in the precondition.

47

The other modification is the crash-condition of the upper layers’ recovery meth-

ods. Previously, since recovery was read-only, the crash-condition was simply the same

as the precondition for layers above DiskLog. With the addition of checksumming,

we define a new Recovering state in each of the upper layers that exactly matches the

full DiskLog recover crash-condition, defined formally in Figure 4-11.

Most of the proof work is already taken care of within DiskLog. All upper layers’

modified specifications are simple to prove using DiskLog’s modified specification.

48

Chapter 5

Evaluation

As mentioned in chapter 4, RapidFSCQ is a sophisticated filesystem that includes sev-

eral optimizations besides log checksumming, such as deferred writes, group commit.

The system also supports file data writes that bypass the filesystem journal, which

we call log bypass. This chapter answers the following questions about RapidFSCQ

as a whole, with log checksum support.

∙ Do RapidFSCQ’s theorems prevent bugs that previous systems could not?

∙ Does RapidFSCQ, with checksumming, indeed achieve good I/O performance?

∙ Are RapidFSCQ’s high-level specifications correct and useful? That is, can

applications use RapidFSCQ’s specifications to prove their own correctness?

One goal of having precise specifications is that applications can prove their

own correctness.

5.1 What bugs are prevented?

We answer the question of whether RapidFSCQ’s theorems prevent real bugs by

presenting a case study of different kinds of bugs that have been discovered in the

Linux ext4 file system. For each, we argue for whether the state-of-the-art prior work

(FSCQ) or RapidFSCQ prevents them.

49

Bug category and example
Possible Prevented Possible Prevented

in FSCQ? by FSCQ? in RapidFSCQ? by RapidFSCQ?

Logging logic; Some (no checksumming) Yes Yes Yes
write/barrier ordering [27, 36, 13]
Misuse of logging API [37, 34] Some (no log bypass) Yes Yes Yes
Bugs in recovery protocol [23, 30] Yes Yes Yes Yes
Improper corner-case handling [40] Yes Yes Yes Yes
Low-level bugs [31, 27, 39] Some (memory safe) Yes Some (memory safe) Yes
Concurrency [28, 35] No — No —

Figure 5-1: Representative bugs found in Linux ext4 and whether RapidFSCQ’s
specifications preclude them.

5.1.1 ext4 bugs case study.

We looked through the git logs for the Linux ext4 file system starting from 2013,

and categorized the bugs fixed in those commits. Figure 5-1 shows the resulting

categories along with representative bugs from each category. For instance, this table

includes the bug that was mentioned in the introduction, where ext4 would disclose

previously deleted file data after a crash [27]. The figure also shows whether each bug

category could have occurred in the implementations of either FSCQ or RapidFSCQ;

for instance, some bugs arise due to concurrent execution of system calls, which is

impossible in both FSCQ and RapidFSCQ by design (i.e., they are not sophisticated

enough to have such a bug). The figure also shows whether the theorems of FSCQ

and RapidFSCQ prevent those bugs.

We make four conclusions from this case study. First, RapidFSCQ is sophisticated

enough that its implementation could have had many of the bugs that were fixed in

ext4, making verification important. Second, the state-of-the-art verified file system,

FSCQ, was not sophisticated enough to even have many of these bugs, especially the

trickier cases that included dealing log checksums. Third, RapidFSCQ’s theorems

preclude every bug category that was possible in its implementation. This suggests

that RapidFSCQ’s theorems are effective at preventing real bugs. Finally, the one

category where RapidFSCQ is not sophisticated enough to have bugs is concurrency:

RapidFSCQ is a single-threaded file system. Verifying a concurrent file system is an

open problem and remains future work.

50

mailbench largefile

ext4 bypass 32.2; 4.2 1.0; 1.0
ext4 logged 49.5; 7.2 4.1; 1.0
RapidFSCQ bypass 68.8; 15.5 1.2; 1.0
RapidFSCQ logged 34.1; 4.6 4.0; 1.0
FSCQ 86.3; 40.1 5.2; 4.1

Figure 5-2: I/O performance of RapidFSCQ compared to FSCQ and to Linux ext4.
Each cell reports the number of writes and barriers, respectively, per application-level
operation.

5.2 I/O performance

A primary goal of RapidFSCQ was to achieve good I/O performance by supporting

deferred writes, group commit, and as discussed in this thesis, log checksums. To

validate that RapidFSCQ’s design indeed achieves its I/O efficiency goal, we run two

benchmarks to stress both data and metadata aspects of RapidFSCQ: mailbench [10]

and a modified LFS largefile benchmark [33]. mailbench performs many metadata

operations by manipulating small files, and our modified largefile performs many data

writes to an existing large file followed by fdatasync calls. To place RapidFSCQ’s I/O

efficiency in context, we also run the same benchmarks on the FSCQ file system, and

on the Linux ext4 file system. We run both ext4 and RapidFSCQ in two different

modes: one which implements log bypass for file data writes (using mount option

data=ordered in ext4), and one which file data writes are logged (using mount option

data=journal in ext4). In ext4, it is possible to enable log checksumming in the logged

configuration (using mount option journal_async_commit), but not in the bypass

configuration, due to a design issue [27].1 We ran this experiment on a machine with

a Samsung MZVKV512HAJH-000L1 NVMe SSD and an Intel Core i7-6600U 2.6 GHz

CPU.

Figure 5-2 shows the results for this experiment, reporting the number of disk

writes and disk write barriers issued by each of the file systems per application-level

1Amusingly, the patch for the design issue prevents the user from mounting a file system with
journal_async_commit,data=ordered options, but if the user omits data=ordered, the check is
bypassed but the kernel defaults to data=ordered anyway.

51

operation (delivering a mail message in mailbench and writing a 4KB block in a large

file for largefile). We used the Linux blktrace support to trace the disk operations

performed by each file system. We draw several conclusions.

First, RapidFSCQ indeed achieves good I/O efficiency, issuing a similar number

of write barriers and disk writes to ext4. For largefile, RapidFSCQ and ext4 have

the same number of write barriers (1.0 per application-level block write) in both

configurations. Both log-bypass configurations write each block to disk just once,

whereas the logged configurations write 4 disk blocks for each application-level block

write. This is because every application-level write turns into an on-disk transaction,

which later must be applied separately. RapidFSCQ writes an average of 1.2 disk

blocks per application-level write because of the startup phase of largefile, where it

grows the file one block at a time. RapidFSCQ’s GroupCommit flushes transactions

to disk when it detects a write to a newly allocated file’s data. Optimizing away this

case is left to future work.

For mailbench, the number of disk barriers varies greatly due to application-level

timing. Since mailbench is a multi-process application, the order of system calls seen

by the file system can change the degree of batching. The low bound, based on back-

of-the-envelope calculations, is 4 write barriers per message; both RapidFSCQ and

ext4 come close to this bound. The variability is high in this experiment; adding even

small sleep statements to mailbench produces different numbers of write barriers,

ranging from 4 to 7.

Second, RapidFSCQ achieves far better I/O efficiency than the state-of-the-art

verified FSCQ file system. This is due to RapidFSCQ’s more sophisticated design

which incorporates standard write-ahead logging optimizations, while FSCQ executes

every system call synchronously, does not use checksums, and applies every transac-

tion at commit time.

As mentioned in the introduction, one limitation of RapidFSCQ is that it is slower

in terms of its CPU performance. For instance, RapidFSCQ in logged mode can

deliver 19 messages per second when running mailbench, while Linux ext4 can deliver

either 26 or 37 messages per second (in logged and bypass modes, respectively).

52

Profiling the RapidFSCQ user-space FUSE file server shows that this overhead is due

to RapidFSCQ’s reliance on Haskell to produce executable code. We hope to adopt

ideas for better generation of certified assembly code in future work.

5.3 Are RapidFSCQ specs correct and useful?

To demonstrate that RapidFSCQ’s specifications for its system calls are meaningful,

we performed the following experiments.

5.3.1 fsstress.

We ran fsstress from the Linux Test Project to check if it finds any bugs in RapidF-

SCQ. When we first ran fsstress, it caused our FUSE file server to crash. However,

after some investigation, we discovered that this was due to a bug in our Haskell

FUSE bindings that sit between RapidFSCQ and the Linux FUSE interface. The

bug was due to the developer thinking that some corner case could not be triggered,

and calling the error function in Haskell to panic if that case ever executed. As it

turns out, fsstress found a way to trigger that corner case. After fixing this bug,

fsstress ran without problems and did not discover any bugs in RapidFSCQ’s proven

code.

5.3.2 Enumerating crash states.

We implemented the crash_safe_update program whose pseudocode was shown in

Figure 4-3. Our specific implementation of the crash_safe_update program writes

and syncs some data to a temporary file using fdatasync, then performs an atomic

rename of the temporary file to a destination file using fsync on the directory. We

ran the program on RapidFSCQ while monitoring all of the disk writes and barriers

issued by RapidFSCQ. We then computed all possible subsets and re-orderings of

RapidFSCQ’s disk writes, subject to its barriers, to produce every possible state in

which RapidFSCQ could have crashed. Finally, we re-mounted the resulting disk

53

with RapidFSCQ and examined the file system state after RapidFSCQ performed its

recovery. This experiment produced 182 possible disks after a crash, but only three

distinct file system states after RapidFSCQ executed its recovery code: neither file

existed, the temporary file existed with no contents, or the destination file existed

with the written contents. All of these states are safe, since either the destination

file didn’t exist or it contained the correct data (the empty temporary file could be

removed during recovery).

5.3.3 Certifying an application.

The above experiments suggest that RapidFSCQ specifications capture the right prop-

erties, because the implementation appears not to have bugs. However, to increase

our confidence that the specifications themselves are correct (and not just the imple-

mentation), we wrote a formal specification for the crash_safe_update program, and

proved its correctness based on the specification of RapidFSCQ.

Proving the correctness of crash_safe_update led us to discover several cases

where the RapidFSCQ specification was too weak. For example, the read specification

originally forgot to mention that the data returned by the system call is related to

the contents of the file. Another example is the fsync system call, which forgot to

promise a safety property required for log bypass. This also uncovered many cases

where the specification was not as convenient to use as it could have been. None of

these issues required changing the RapidFSCQ implementation, and we were able to

re-prove the correctness of RapidFSCQ after fixing the specification.

Proving crash_safe_update also led us to discover a number of corner cases in

crash_safe_update itself. For example, we discovered that crash_safe_update cannot

perform a safe update on a file with the same file name as the temporary file that

it uses. After fixing the specification to take into account these corner cases, we

were able to prove the correctness of crash_safe_update when running on top of

RapidFSCQ.

54

Chapter 6

Conclusion

Even well-studied and widely used filesystems like ext4 have a long history of bugs,

some of which aren’t discovered until after they have already caused disastrous data

loss or disclosure. FSCQ was the first filesystem to formally verify the absence of such

bugs. However, formally verified systems like FSCQ have a long way to go before they

can be used in practice, mostly due to the difficulty of verifying optimizations.

This thesis presents the first formally verified logging system to use checksumming

to improve performance. Although some progress has been made towards formally

modeling hash function behavior, this is the first example of a practical application

of a formally defined hash function to a system that supports disk I/O, the ability to

crash and recover, and so on.

We focus the work in this thesis first towards a formal and logically sound def-

inition of hashing execution semantics. Next, we demonstrate their practicality by

building short programs that use these semantics to prove simple specifications. Fi-

nally, we use these simple hashing procedures to build checksums into a fully verified,

highly optimized logging system. In our evaluation, we show that RapidFSCQ, a

filesystem built on top of the logging system, achieves the desired goal of I/O ef-

ficiency similar to that of ext4, while formally guaranteeing crash safety properties

that can be empirically checked.

Of course, there is still much to be done in the area of formally verified filesystems,

as well as verified systems in general. Although the evaluation in this thesis shows

55

that I/O efficiency is achievable through careful system design, practical performance

is still out of reach. The Haskell executable extracted from the Coq implementation

of RapidFSCQ is bottlenecked by CPU, not disk I/O. This, as well as the addition

of the Haskell runtime to the trusted computing base, remains a problem in general

Coq-based systems.

General system concurrency, something application developers often take for granted,

is also notoriously difficult to formalize and verify. With the wrong specification,

adding concurrency to a system can exponentially increase proof effort. Defining the

correct specification for a concurrent filesystem, as well as multithreaded systems in

general, remains an interesting open problem.

Although there is a long way ahead before formally verified systems can be widely

adopted, recent developments in this field have laid the foundation for future work. In

this thesis alone, we can see the progress being made towards specifying and proving

common systems features that until now remained unverified and prone to error. We

hope that the work described here will further the construction of other verified,

practical computer systems.

56

Bibliography

[1] Proceedings of the 11th Symposium on Operating Systems Design and Implemen-
tation (OSDI), Broomfield, CO, October 2014.

[2] Proceedings of the 21th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), Atlanta, GA, April
2016.

[3] Sidney Amani, Alex Hixon, Zilin Chen, Christine Rizkallah, Peter Chubb, Liam
O’Connor, Joel Beeren, Yutaka Nagashima, Japheth Lim, Thomas Sewell, Joseph
Tuong, Gabriele Keller, Toby Murray, Gerwin Klein, and Gernot Heiser. Co-
gent: Verifying high-assurance file system implementations. In Proceedings
of the 21th International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS) [2], pages 175–188.

[4] Konstantine Arkoudas, Karen Zee, Viktor Kuncak, and Martin Rinard. Verifying
a file system implementation. In Proceedings of the 6th International Conference
on Formal Engineering Methods, Seattle, WA, November 2004.

[5] Gilles Barthe, Cédric Fournet, Benjamin Grégoire, Pierre-Yves Strub, Nikhil
Swamy, and Santiago Zanella-Béguelin. Probabilistic relational verification for
cryptographic implementations. In Proceedings of the 41st ACM Symposium on
Principles of Programming Languages (POPL), San Diego, CA, January 2014.

[6] William R. Bevier and Richard M. Cohen. An executable model of the Synergy
file system. Technical Report 121, Computational Logic, Inc., October 1996.

[7] William R. Bevier, Richard M. Cohen, and Jeff Turner. A specification for the
Synergy file system. Technical Report 120, Computational Logic, Inc., September
1995.

[8] James Bornholt, Antoine Kaufmann, Jialin Li, Arvind Krishnamurthy, Emina
Torlak, and Xi Wang. Specifying and checking file system crash-consistency mod-
els. In Proceedings of the 21th International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS) [2], pages 83–98.

[9] Haogang Chen, Daniel Ziegler, Tej Chajed, Adam Chlipala, M. Frans Kaashoek,
and Nickolai Zeldovich. Using Crash Hoare Logic for certifying the FSCQ file
system. In Proceedings of the 25th ACM Symposium on Operating Systems Prin-
ciples (SOSP), Monterey, CA, October 2015.

57

[10] Austin T. Clements, M. Frans Kaashoek, Nickolai Zeldovich, Robert T. Morris,
and Eddie Kohler. The scalable commutativity rule: Designing scalable soft-
ware for multicore processors. In Proceedings of the 24th ACM Symposium on
Operating Systems Principles (SOSP), pages 1–17, Farmington, PA, November
2013.

[11] Coq development team. The Coq Proof Assistant Reference Manual, Ver-
sion 8.5pl1. INRIA, April 2016. http://coq.inria.fr/distrib/current/
refman/.

[12] Jonathan Corbet. ext4 and data loss. http://lwn.net/Articles/322823/,
March 2009.

[13] Lukas Czerner. [PATCH] ext4: Fix data corruption caused by unwritten and
delayed extents. https://lwn.net/Articles/645722, April 2015.

[14] Danny Dolev and Andrew C. Yao. On the security of public key protocols.
Technical report, Stanford, CA, USA, 1981.

[15] Gidon Ernst, Gerhard Schellhorn, Dominik Haneberg, Jorg Pfähler, and Wolf-
gang Reif. Verification of a virtual filesystem switch. In Proceedings of the
5th Working Conference on Verified Software: Theories, Tools and Experiments,
Menlo Park, CA, May 2013.

[16] Miguel Alexandre Ferreira and Jose Nuno Oliveira. An integrated formal methods
tool-chain and its application to verifying a file system model. In Proceedings of
the 12th Brazilian Symposium on Formal Methods, August 2009.

[17] Leo Freitas, Jim Woodcock, and Andrew Butterfield. POSIX and the verification
grand challenge: A roadmap. In Proceedings of 13th IEEE International Confer-
ence on Engineering of Complex Computer Systems, pages 153–162, March–April
2008.

[18] Philippa Gardner, Gian Ntzik, and Adam Wright. Local reasoning for the POSIX
file system. In Proceedings of the 23rd European Symposium on Programming,
pages 169–188, Grenoble, France, 2014.

[19] Bogdan Gribincea et al. Ext4 data loss. https://bugs.launchpad.net/
ubuntu/+source/linux/+bug/317781, January 2009.

[20] Wim H. Hesselink and M.I. Lali. Formalizing a hierarchical file system. In Pro-
ceedings of the 14th BCS-FACS Refinement Workshop, pages 67–85, December
2009.

[21] C. A. R. Hoare. An axiomatic basis for computer programming. Communications
of the ACM, 12(10):576–580, October 1969.

58

http://coq.inria.fr/distrib/current/refman/
http://coq.inria.fr/distrib/current/refman/
http://lwn.net/Articles/322823/
https://lwn.net/Articles/645722
https://bugs.launchpad.net/ubuntu/+source/linux/+bug/317781
https://bugs.launchpad.net/ubuntu/+source/linux/+bug/317781

[22] William A. Howard. The formulas-as-types notion of construction. In J. P.
Seldin and J. R. Hindley, editors, To H. B. Curry: Essays on Combinatory
Logic, Lambda Calculus, and Formalism, pages 479–490. Academic Press, 1980.
Reprint of 1969 article.

[23] Ben Hutchings. [PATCH 3.2 027/115] jbd2: fix fs corruption possibility in
jbd2_journal_destroy() on umount path. https://lkml.org/lkml/2016/4/
26/1230, April 2016.

[24] Dave Jones. Trinity: A Linux system call fuzz tester, 2014. http://codemonkey.
org.uk/projects/trinity/.

[25] Rajeev Joshi and Gerard J. Holzmann. A mini challenge: Build a verifiable
filesystem. Formal Aspects of Computing, 19(2):269–272, June 2007.

[26] Eunsuk Kang and Daniel Jackson. Formal modeling and analysis of a Flash
filesystem in Alloy. In Proceedings of the 1st Int’l Conference of Abstract State
Machines, B and Z, pages 294–308, London, UK, September 2008.

[27] Jan Kara. [PATCH] ext4: Forbid journal_async_commit in data=ordered
mode. http://permalink.gmane.org/gmane.comp.file-systems.ext4/
46977, November 2014.

[28] Jan Kara. ext4: fix crashes in dioread_nolock mode. http://permalink.
gmane.org/gmane.linux.kernel.commits.head/575311, February 2016.

[29] Eric Koskinen and Junfeng Yang. Reducing crash recoverability to reachabil-
ity. In Proceedings of the 43rd ACM Symposium on Principles of Programming
Languages (POPL), pages 97–108, St. Petersburg, FL, January 2016.

[30] Kamal Mostafa. [PATCH 3.13 075/103] jbd2: fix descriptor block size handling
errors with journal_csum. https://lkml.org/lkml/2014/9/30/747, Septem-
ber 2014.

[31] Kamal Mostafa. ext4: fix null pointer dereference when
journal restart fails. https://git.kernel.org/cgit/
linux/kernel/git/stable/linux-stable.git/commit/?id=
9d506594069355d1fb2de3f9104667312ff08ed3, June 2016.

[32] Thanumalayan Sankaranarayana Pillai, Vijay Chidambaram, Ramnatthan Ala-
gappan, Samer Al-Kiswany, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-
Dusseau. All file systems are not created equal: On the complexity of crafting
crash-consistent applications. In Proceedings of the 11th Symposium on Operating
Systems Design and Implementation (OSDI) [1], pages 433–448.

[33] M. Rosenblum and J. Ousterhout. The design and implementation of a log-
structured file system. In Proceedings of the 13th ACM Symposium on Operating
Systems Principles (SOSP), pages 1–15, Pacific Grove, CA, October 1991.

59

https://lkml.org/lkml/2016/4/26/1230
https://lkml.org/lkml/2016/4/26/1230
http://codemonkey.org.uk/projects/trinity/
http://codemonkey.org.uk/projects/trinity/
http://permalink.gmane.org/gmane.comp.file-systems.ext4/46977
http://permalink.gmane.org/gmane.comp.file-systems.ext4/46977
http://permalink.gmane.org/gmane.linux.kernel.commits.head/575311
http://permalink.gmane.org/gmane.linux.kernel.commits.head/575311
https://lkml.org/lkml/2014/9/30/747
https://git.kernel.org/cgit/linux/kernel/git/stable/linux-stable.git/commit/?id=9d506594069355d1fb2de3f9104667312ff08ed3
https://git.kernel.org/cgit/linux/kernel/git/stable/linux-stable.git/commit/?id=9d506594069355d1fb2de3f9104667312ff08ed3
https://git.kernel.org/cgit/linux/kernel/git/stable/linux-stable.git/commit/?id=9d506594069355d1fb2de3f9104667312ff08ed3

[34] Eric Sandeen. [PATCH] ext4: fix unjournaled inode bitmap modification.
http://permalink.gmane.org/gmane.comp.file-systems.ext4/35119, Oc-
tober 2012.

[35] Theodore Ts’o. ext4: fix race between truncate and
__ext4_journalled_writepage(). https://git.kernel.org/
cgit/linux/kernel/git/stable/linux-stable.git/commit/?id=
bdf96838aea6a265f2ae6cbcfb12a778c84a0b8e, June 2015.

[36] Theodore Ts’o. [PATCH] ext4, jbd2: add req_fua flag when recording an
error flag. http://permalink.gmane.org/gmane.comp.file-systems.ext4/
49323, July 2015.

[37] Theodore Ts’o. [PATCH] ext4: use private version of page_zero_new_buffers()
for data=journal mode. https://lkml.org/lkml/2015/10/9/1, October 2015.

[38] Markus Wenzel. Some aspects of Unix file-system security, August 2014. http:
//isabelle.in.tum.de/library/HOL/HOL-Unix/Unix.html.

[39] Darrick J. Wong. jbd2: Fix endian mixing problems in the checksumming code.
http://lists.openwall.net/linux-ext4/2013/07/17/1, July 2013.

[40] Darrick J. Wong. [PATCH] ext4: fix same-dir rename when inline data directory
overflows. http://permalink.gmane.org/gmane.comp.file-systems.ext4/
45594, August 2014.

[41] Junfeng Yang, Can Sar, Paul Twohey, Cristian Cadar, and Dawson Engler. Au-
tomatically generating malicious disks using symbolic execution. In Proceedings
of the 27th IEEE Symposium on Security and Privacy, pages 243–257, Oakland,
CA, May 2006.

[42] Junfeng Yang, Paul Twohey, Dawson Engler, and Madanlal Musuvathi. Using
model checking to find serious file system errors. In Proceedings of the 6th Sympo-
sium on Operating Systems Design and Implementation (OSDI), pages 273–287,
San Francisco, CA, December 2004.

[43] Junfeng Yang, Paul Twohey, Dawson Engler, and Madanlal Musuvathi. eX-
plode: A lightweight, general system for finding serious storage system errors.
In Proceedings of the 7th Symposium on Operating Systems Design and Imple-
mentation (OSDI), pages 131–146, Seattle, WA, November 2006.

[44] Yuan Yu, Panagiotis Manolios, and Leslie Lamport. Model checking tla+ spec-
ifications. In Correct Hardware Design and Verification Methods, pages 54–66.
Springer, 1999.

[45] Mai Zheng, Joseph Tucek, Dachuan Huang, Feng Qin, Mark Lillibridge, Eliza-
beth S. Yang, Bill W. Zhao, and Shashank Singh. Torturing databases for fun
and profit. In Proceedings of the 11th Symposium on Operating Systems Design
and Implementation (OSDI) [1], pages 449–464.

60

http://permalink.gmane.org/gmane.comp.file-systems.ext4/35119
https://git.kernel.org/cgit/linux/kernel/git/stable/linux-stable.git/commit/?id=bdf96838aea6a265f2ae6cbcfb12a778c84a0b8e
https://git.kernel.org/cgit/linux/kernel/git/stable/linux-stable.git/commit/?id=bdf96838aea6a265f2ae6cbcfb12a778c84a0b8e
https://git.kernel.org/cgit/linux/kernel/git/stable/linux-stable.git/commit/?id=bdf96838aea6a265f2ae6cbcfb12a778c84a0b8e
http://permalink.gmane.org/gmane.comp.file-systems.ext4/49323
http://permalink.gmane.org/gmane.comp.file-systems.ext4/49323
https://lkml.org/lkml/2015/10/9/1
http://isabelle.in.tum.de/library/HOL/HOL-Unix/Unix.html
http://isabelle.in.tum.de/library/HOL/HOL-Unix/Unix.html
http://lists.openwall.net/linux-ext4/2013/07/17/1
http://permalink.gmane.org/gmane.comp.file-systems.ext4/45594
http://permalink.gmane.org/gmane.comp.file-systems.ext4/45594

	Introduction
	Modeling hash collisions
	Verifying checksums in a crash-safe log
	Outline

	Related Work
	Modeling hash collisions
	File-system verification
	Application bugs

	Modeling hash collisions
	Execution semantics
	Specification
	Hash subsets
	Modeling checksums

	Logging with checksums
	PulsarFS Overview
	Specification
	Implementation

	Checksummed log implementation
	Checksummed log specification

	Evaluation
	What bugs are prevented?
	ext4 bugs case study.

	I/O performance
	Are PulsarFS specs correct and useful?
	fsstress.
	Enumerating crash states.
	Certifying an application.

	Conclusion

