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Reducing Pause Times With Clustered Collection

by

Cody Cutler

Submitted to the Department of Electrical Engineering and Computer Science
on May 12, 2014, in partial fulfillment of the

requirements for the degree of
Master of Science in Computer Science and Engineering

Abstract

Clustered Collection reduces garbage collection pauses in programs with large amounts
of live data. A full collection of millions of live objects can pause the program for
multiple seconds. Much of this work, however, is repeated from one collection to
the next, particularly for programs that modify only a small fraction of their object
graphs between collections.

Clustered Collection reduces redundant work by identifying regions of the object
graph which, once traced, need not be traced by subsequent collections. Each of
these regions, or “clusters,” consists of objects reachable from a single head object. If
the collector can reach a cluster’s head object, it skips over the cluster, and resumes
tracing at the pointers that leave the cluster. If a cluster’s head object is not reachable,
or an object within a cluster has been written, the cluster collector may have to
trace within the cluster. Clustered Collection is complete despite not tracing within
clusters: it frees all unreachable objects.

Clustered Collection is implemented as modifications to the Racket collector. Mea-
surements of the code and data from the Hacker News web site show that Clustered
Collection decreases full collection pause times by a factor of three. Hacker News
works well with Clustered Collection because it keeps gigabytes of data in memory
but modifies only a small fraction of that data. Other experiments demonstrate the
ability of Clustered Collection to tolerate certain kinds of writes, and quantify the
cost of finding clusters.

Thesis Supervisor: Robert Morris
Title: Professor
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Chapter 1

Introduction

A major cost in tracing garbage collectors is the need to eventually examine every

live object in order to follow its child pointers. If there are millions of live objects

this tracing can easily take a few seconds. Stop-the-world collectors expose this cost

directly in the form of pause times, which can be awkward for servers and interactive

programs. Many techniques have been developed to reduce or mask tracing cost, such

as parallel, concurrent, and generational collection [9, 6, 2, 4, 10, 12]. However, all of

these techniques would benefit if they had to trace fewer objects.

The work in this thesis exploits the similarity of the garbage collection compu-

tation from one run to the next, particularly for large programs that modify only a

fraction of their data. The basic idea is that successive full collections can omit trac-

ing within regions of the object graph that the program does not modify. A design

based on this idea must answer some key questions. How to constrain regions so that

they can be skipped without sacrificing safety or completeness? How to find regions

that are unlikely to be modified by program writes? How to react to any writes that

do occur? How to find regions whose pointers mostly stay within the region?

Clustered Collection addresses these problems as follows. A periodic Cluster Anal-

ysis identifies non-overlapping clusters, each consisting of a head object along with

other objects reachable from the head. Cluster Analysis records, for each cluster,

the locations of “out” pointers that leave that cluster. During a full collection, if a

cluster’s head object is reachable and the cluster’s objects have not suffered certain
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kinds of writes, the entire cluster is live and need not be traced. In that case tracing

resumes at the cluster’s “out” pointers (thus maintaining safety). A program write

in a cluster that could cause one of the cluster’s objects to be unreferenced causes the

cluster to be dissolved: full collections until the next Cluster Analysis must trace the

ex-cluster’s objects (thus maintaining completeness). Other kinds of program writes

within clusters can either be ignored or handled by modifying the cluster’s out-pointer

list.

Much of the design of Clustered Collection focuses on choosing clusters likely to

be helpful in reducing full collection pause times. One major consideration is that

clusters should be unlikely to suffer program writes that force them to be dissolved.

Cluster Analysis omits recently-written objects from any cluster, since such objects

may be likely to suffer more writes in the near future. Cluster Analysis adaptively

limits the maximum cluster size to reduce the probability that any one cluster suffers

a write. Clustered Collection also avoids dissolving a cluster despite many kinds

of program writes, when it can establish that the write cannot change any object’s

liveness.

The other main consideration is that each cluster should have relatively few “out”

pointers, to reduce the time that a full collection must spend tracing them. Cluster

Analysis tries to form clusters large enough that each holds many “natural clusters”

(e.g. sub-trees); this helps reduce out-pointers by reducing the number of natural

clusters sliced by each cluster’s boundary. Cluster Analysis also detects commonly

referenced and effectively immortal objects (e.g. type objects) and avoids creating

out-pointers to them.

This work presents an implementation of Clustered Collection as a modification to

Racket’s precise single-threaded generational collector [11, 5]. The main challenge in

this implementation is Racket’s page-granularity write barriers. The implementation

achieves finer granularity by creating a shadow copy of the old content of each written

page in order to observe the specific writes to clustered objects that a program makes.

The Evaluation shows the performance improvement for two programs that are

well suited to Clustered Collection: a news aggregator web service with hundreds of
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thousands of articles, and a k-nearest-neighbor classification program with 1.25 GB of

training data. For the former, Clustered Collection reduces full-collection pause times

by an average of 3×. For the latter, somewhat less than 2×. Clustered Collection

imposes two costs in return for shorter full collection pause times: total program

throughput is 10% and 3% slower, respectively, and the initial Cluster Analysis takes

a few times longer than a full collection. The evaluation explores the dependence of

performance on various aspects of program behavior, as well as the overheads that

Clustered Collection imposes on the program. Clustered Collection is most effective

for programs that have large numbers of live objects, and that have locality in their

writes – that concentrate their writes in particular parts of the object graph so that

large regions are unmodified from one collection to the next.

To summarize, this work’s novel contributions include: 1) the idea that full collec-

tions can profitably avoid re-tracing regions of the object graph that have not been

modified; 2) heuristics for discovering useful instances of such regions; and 3) an

evaluation exploring the conditions under which the technique is most beneficial.
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Chapter 2

Related Work

Hayes [7] observes that related objects often have the same lifetimes, and in particular

die at about the same time. Hayes suggests a “key object opportunism” garbage

collection technique, in which a “key” object acts as a proxy for an entire cluster;

the collector would only trace the cluster if the key object were no longer reachable.

Hayes’ work contains the basic insight on which Clustered Collection is built, but

is not a complete enough design that its properties can be compared with those of

Clustered Collection.

Generational garbage collection [9] is related to Clustered Collection in the sense

that, if objects in the old generation don’t change much, a generational collector

will not trace them very often. However, once a generational collector decides to

collect the old generation, it traces every live object; thus a generational garbage

collector reduces total time spent in collection but not the pause time for individual

full collections. Clustered Collection is compatible with generational collection, and

can reduce their full collection pause times. Clustered Collection also borrows the

write barrier technique from generational collectors, though it uses barriers to track

connectivity changes within and among clusters rather than between the old and new

generations.

Generalizations of generational collection [8, 4] partition the heap and are able

to collect just one partition at a time, reducing worst-case pause times. The G1

collector [4] keeps track of inter-partition pointers using write barriers, a technique

15



which Clustered Collection borrows. The main new ideas in Clustered Collection have

to do with actively finding parts of the object graph that never need to be traced

(modulo program writes); G1 does not do this.

Parallel [6] and concurrent/incremental [2, 12, 10] garbage collectors reduce pause

times for full collections by running the collection on multiple cores or by performing

some of the collection while the program runs. Clustered Collection seems likely to

be helpful if added to a parallel collector.

Cohen [3] reduces collection synchronization in a parallel run-time by associating

sub-heaps of data with clusters of threads that access that data; different sub-heaps

can be collected without disturbing program threads using other sub-heaps.

Real-time collectors [1, 10] ensure that garbage collection pauses do not prevent

the application from meeting deadlines by bounding the duration of collection pauses.

The goal of our work differs with real-time collectors in that Clustered Collection aims

to reduce total full collection pause times while real-time collectors suffer the pause

time of a full collection in separate, consistent pauses.

The Mapping Collector [13] exploits the similarity in lifetimes of groups of objects

that are allocated at the same time; instead of copying objects to avoid fragmentation,

it waits for whole pages of objects to become dead, so that entire pages can be recycled.

Avoiding copying allows the Mapping Collector to reduce pause times. Clustered

Collection exploits related properties of objects; it does have to copy clustered objects,

but then is able to avoid further copies of tracing in those objects.

16



Chapter 3

Design

3.1 Overview

Clustered Collection is an extension to pointer-tracing collector designs. It has three

parts. Cluster Analysis runs periodically to decide which parts of the object graph

should form clusters. The Watcher uses write barriers to recognize when the program

modifies an object in a cluster. The Tracer modifies the way a full collection’s “mark”

phase traces pointers, causing it to skip over unmodified clusters.

Suppose a program’s live object graph looks like part A of Figure 3-1. When

Cluster Analysis examines the object graph, it might choose the two clusters shown

in part B. Each cluster has a “head” object (shown with a green dot), from which all

other objects in the cluster must be reachable; during a collection, reachability of the

head implies that all of the cluster’s objects are live. Pointers may also enter a cluster

to non-head objects, but only an external reference to the head will cause the Tracer

to skip tracing the whole cluster. For each cluster, Cluster Analysis records the set

of objects in the cluster that contain “out” pointers referring to objects outside the

cluster (there is just one in Part B).

While the program executes, the Watcher uses write barriers to detect program

modifications of cluster objects. Part C shows three modifications with red dots: the

program has added a new child to the root object, has changed a pointer in the right-

hand cluster to point to a different object in the cluster, and has added a pointer

17



Figure 3-1: An example clustering. Nodes with green circles are cluster head objects,
arrows are pointers, dashed arrows are “out” pointers, and blue boxes enclose clusters.
Part A shows an application’s live data, part B shows a possible choice of clusters, part
C depicts the live data after the program has modified some data (changed pointers
in red), and part D shows Clustered Collection’s response (dissolving the right-hand
cluster).
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to an outside object to the left-hand cluster. The Watcher responds to the change

in the right-hand cluster by dissolving the cluster, since a change to an intra-cluster

pointer may cause an object in the cluster to be unreachable (as has happened here);

completeness requires that full collections no longer skip that cluster. The Watcher

also marks the written object so that later Cluster Analyses will omit it from any

cluster.

The Watcher can tell that the program’s write to the left-hand cluster in part C

could not have changed the liveness of any object within the cluster (by comparing

the old pointer with the newly written pointer), so it does not dissolve the cluster.

Because the new pointer points outside the cluster, it may affect liveness of outside

objects, so the Watcher adds an entry to the cluster’s out-pointer set.

The Tracer is part of the full garbage collector’s “mark” phase. Ordinarily, a mark

phase follows (“traces”) all pointers from a set of roots to discover all live objects;

the mark phase sets a “mark” bit in each discovered object’s header to indicate that

it is alive. The Tracer modifies this behavior. At the start of a collection, the Tracer

forgets about clusters that the Watcher dissolved, leaving the situation in Part D.

If the mark phase encounters the “head” object of one of the remaining clusters,

the Tracer marks the entire cluster as live, and causes the mark phase to continue

by tracing the cluster’s “out” pointers. If the Tracer encounters an object inside

a cluster before encountering that cluster’s head object, it postpones the object in

order to increase the chance of the cluster’s head being traced during the remainder

of the mark phase, enabling the Tracer to skip the postponed object when it is later

re-examined. If the cluster containing the postponed object is still unmarked when

the postponed object is re-examined, it will be traced in the ordinary way.

In the example in Figure 3-1, it is good that Cluster Analysis created two clusters

instead of one; that allowed the left-hand cluster to survive despite the writes in Part

C.

A cluster is similar to an object: one can view it as a single node in the object

graph, with pointers to it and pointers out of it. The cost to trace a cluster is

little more than the cost of tracing a single object; thus the more objects Clustered
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Collection can hide inside clusters, the more it can decrease collection pauses.

3.2 Clusters

The most important aspect of the Clustered Collection design is the way it chooses

clusters. This chapter explains the properties that clusters must have in order to be

correct and useful.

In order that Clustered Collection be safe (never free reachable objects) and com-

plete (free all unreachable objects), the collector includes these design elements:

• Head objects: In order to be complete despite not tracing inside clusters, there

must be a way to decide whether all of a cluster’s objects are reachable. Clus-

tered Collection does this by choosing clusters that have a head object from

which all other objects in the cluster are reachable; if the head object is reach-

able from outside the cluster, every object in the cluster is live.

• Out pointers: In order to be safe, the collector must trace all pointers that

leave each cluster. Clustered Collection does this by recording the set of cluster

objects that contain “out” pointers, which it traces during collections.

• Write barriers: In order to maintain the invariants that all of a cluster’s objects

are reachable from the head, and that the “out” set contains all external point-

ers, Clustered Collection must be aware of all program writes to cluster objects.

Some writes may force the cluster to be dissolved, or may require additions to

the cluster’s “out” set.

Among the possible correct clusters, some choices lead to greater reduction in full

collection time than others:

• Objects written in the recent past may be likely to be written in the near

future, forcing the containing cluster to be dissolved. Thus it is good to omit

recently-written objects from any cluster.

20



• Large clusters are good because they can reduce the number of “out” pointers

that each full collection must trace. For example, if the head object is an interior

node of a tree, it’s good to allow the cluster to be large enough to encompass

the entire sub-tree below the head, since then all the tree links will point within

the cluster. A cluster smaller than the entire sub-tree will have to have “out”

pointers leading to sub-sub-trees.

• On the other hand, a large cluster is likely to have a higher probability of

receiving at least one write than a small cluster. Since even a single write may

force dissolution of the entire cluster, there is an advantage to limiting the size

of clusters.

• Very small clusters, and clusters with a high ratio of “out” pointers to objects,

may have costs that exceed any savings.

3.3 State

Clustered Collection maintains these data structures:

• o.cluster: for each object, the number of the cluster it belongs to, if any.

• o.head: for each object, a flag indicating whether the object is the head of its

cluster.

• o.written: for each object, a flag indicating that the program has written the

object since the last Cluster Analysis execution.

• c.mark: for each cluster, a flag indicating whether the cluster’s head has been

reached during the current full collection.

• c.out: for each cluster, its “out” set: the set of objects within the cluster that

contain “out” pointers.

21



3.4 Cluster Analysis

The job of Cluster Analysis is to form clusters in accordance with the considerations

explained in Section 3.2.

Cluster Analysis gets a chance to run before each full collection. It runs if two

conditions are met: 1) the program size has stabilized, and 2) the ratio of unclustered

objects to clustered objects is above a threshold run thresh. The first condition

suppresses Cluster Analysis during program initialization; it is true as soon as a full

collection sees that that the amount of live data has increased by only a small fraction

since the last full collection. For the second condition, the ratio of unclustered objects

to clustered objects is low immediately after Cluster Analysis runs, then grows as

program writes cause clusters to be dissolved, until it reaches run thresh and Cluster

Analysis runs again. Cluster Analysis leaves existing clusters alone, and forms new

clusters out of unclustered objects.

Cluster Analysis pseudo-code is shown in Figure 3-2. At any given time, Cluster

Analysis has a work stack of pairs of objects and cluster identifiers. It processes a

work stack item o/c as follows. If Cluster Analysis has already visited object o, it

ignores it. If o has been written since the last Cluster Analysis execution (o.written

is set), or is a “sink” object (see below), Cluster Analysis adds o to no cluster, and

pushes o’s children on the work stack, each with a null c. o’s children are likely to

become cluster heads. Otherwise, if c is not null, and adding o to cluster c would not

cause c to contain more than max size thresh objects, Cluster Analysis adds o to c

and pushes o’s children with c. Otherwise Cluster Analysis creates a new cluster c′

with o as head, and pushes o’s children with c′.

Cluster Analysis then moves each cluster’s objects to a separate region of memory,

so that the cluster’s objects are not intermingled with any other objects. This has

several benefits. First, until the entire cluster is freed or dissolved, the cluster’s

objects will not need to be moved since they are not fragmented. Second, to the

extent that frequently-written objects are successfully omitted from clusters, cluster

memory will be less likely to suffer Racket write-barrier page faults and shadow page
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function cluster analysis:
if heap size is not yet stable then

return
if #unclustered/#clustered < run thresh then

return
if nw > no then

max size thresh /= 2
else

max size thresh *= 2
for r in roots do

cluster1(r, nil)

clear all o.written
move objects to per-cluster separate memory
fix up pointers to clustered objects
for c in clusters do

calculate c.out
for c in clusters do

np = numoutpointers(c)
if np / size(c) > out thresh then

delete(c)
else if size(c) < min size thresh then

delete(c)

function cluster1(object o, cluster c):
if live cluster(o.cluster) then

if o.cluster.mark then
return

o.cluster.mark = True
for o1 in o.cluster.out do

cluster1(o1, nil)

return
if o.mark then

return
o.mark = True
sizeok = size(c)+1 < max size thresh
if o.written or is sink(o) then

c = nil
else if c 6= nil and sizeok then

o.cluster = c
else

c = new cluster
o.cluster = c
o.head = True

for o1 in children(o) do
cluster1(o1, c)

Figure 3-2: Cluster Analysis pseudo-code. The implementation uses a work stack
rather than recursive calls.
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copying. Third, the cluster’s “out” set can be compactly represented by a bitmap

with a bit for each word in the cluster’s memory area. Finally, since collections don’t

move a cluster’s objects, intra-cluster pointers need not be fixed up during garbage

collection.

Cluster Analysis then builds the “out” set for each cluster by scanning the cluster’s

objects. It places an object in the out set if it contains a pointer to a non-sink object

that is outside the cluster.

Finally, Cluster Analysis looks for clusters whose out-pointer-to-object ratios are

greater than out thresh, or whose size is less than min size thresh, and destroys

them. Such clusters do not save enough collector work to be worth the book-keeping

overhead. More importantly, destroying these clusters feeds back into the adaptive

maximum size computation; see Section 3.5 below.

3.5 Cluster Size Threshold

Cluster Analysis adjusts max size thresh (the target cluster size) adaptively. Clus-

ters should be large enough that many of a cluster’s objects’ pointers point within

the cluster, in order to reduce the number of out-pointers. Clusters should also be

small enough that many clusters will not suffer any program writes, and thus won’t

have to be dissolved.

max size thresh is initially one sixteenth of the number of objects at the time

Cluster Analysis first executes. On each subsequent execution, Cluster Analysis cal-

culates the number of objects in clusters that were dissolved due to writes since the

last execution (nw), and the number of objects in clusters that the previous execution

dissolved because they had too many out-pointers (no). If nw is greater than no,

max size thresh is halved. Otherwise it is doubled.

This algorithm causes max size thresh to oscillate. This oscillation causes no

problems as long as the threshold is considerably larger than the “natural” size of the

program’s clusters.
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3.6 Sink Objects

Some objects are so pervasively referenced that they would greatly inflate cluster out-

pointer sets if not handled specially; type-descriptor objects are an example. Cluster

Analysis detects long-lived objects with large numbers of references, declaring them

“sink” objects. It omits them from cluster out-pointer sets, moves them to “immortal”

regions of memory, does not include them in any cluster, and arranges for them not

to be moved by subsequent collections. “Sink” objects are detected while building

the “out” sets; the objects most referenced by a cluster’s “out” set will become “sink”

objects if the number of references exceeds a threshold, sink thresh.

3.7 Watcher

Clustered Collection needs to know about program writes for three reasons. First,

a write to one of a cluster’s objects may cause violation of the invariant that the

cluster’s “out” set contains all pointers that leave the cluster. Second, a write to

one of a cluster’s objects may cause violation of the invariant that all of the cluster’s

objects are reachable from the head object. Third, Cluster Analysis should not include

objects written in the recent past in any cluster. Clustered Collection can use the

write barriers that are usually required for a generational garbage collector (but object

granularity precision is needed; see Section 4).

For each object the program writes, the Watcher decides whether the write forces

dissolution of the object’s enclosing cluster. Suppose the program modifies o so that

a slot that used to point to oo now points to on. If oo is inside the same cluster

as o, then the modification forces dissolution because oo may now be unreachable;

the Watcher sets o’s o.written and marks the cluster as dissolved. If oo is a “sink”

object or an immediate value such as a small integer, and on is outside the cluster,

the Watcher adds o to the cluster’s “out” set. Otherwise, if none of o’s slots reference

objects outside o’s cluster, o is removed from the cluster’s “out” set.

The above strategy avoids cluster dissolution for many program writes. For exam-
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ple, suppose both oo and on are outside the cluster. Changing o to point to on rather

than oo does not affect liveness of objects inside the cluster, though it may affect

liveness of oo or on. Because the collector will trace all of the cluster’s out-pointers,

and because the out-pointer set contains the locations of the out-pointers (rather

than their values), the collector will notice if the modification changed the liveness of

either oo or on. Thus the Watcher can safely ignore the write in this example.

3.8 Tracer

Clustered Collection requires modifications to the underlying garbage collector, as

follows.

Before the mark phase, the collector discards information about clusters dissolved

due to writes since the last collection. These clusters’ objects are then treated as

ordinary (non-clustered) objects.

During the collector’s mark phase:

• If the mark phase encounters cluster c’s head object, and c.mark is not set, the

mark phase sets c.mark and traces c’s “out” pointers.

• If the mark phase encounters a non-head object o in cluster c, and c.mark is

set, the mark phase ignores o. If c.mark is not set and o’s mark is not set, the

mark phase postpones the marking of o and its children.

• If the mark phase encounters an unmarked object that is not in a cluster, it

proceeds in the ordinary way (by setting its mark bit and tracing its children).

• The mark phase processes the postponed objects once only postponed objects

remain. For each postponed object o in cluster c, if c.mark is set, the mark

phase ignores o. Otherwise the mark phase sets o’s mark and traces its child

pointers.

The purpose of postponing non-head objects is to avoid inter-cluster tracing. If

the head of an object’s cluster is traced after an object has been postponed but before
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that postponed object is re-inspected, the postponed object can be ignored.

After the mark phase completes, all non-live clusters are dissolved. All objects in

each live cluster are live. A non-cluster object (including any object in a dissolved

cluster) is live if its mark bit is set.

The collector’s copy or compaction phase does not move objects in live clusters.

The collector must “fix up” pointers to any objects it moves. Typically the fix-up

phase considers every child pointer of every object. Since a collection doesn’t move

objects that are in clusters, the fix-up phase only needs to consider pointers in objects

in a cluster’s “out” set; other pointers in cluster objects don’t need fixing, since they

point either to objects within the same cluster, or to “sink” objects that never move.

3.9 Discussion

Cluster Analysis uses depth-first search to build clusters, with max size thresh lim-

iting the size of each cluster. This strategy works well for lists and for tree-shaped

data: it yields clusters with a high object-to-out-pointer ratio. For a list of small

items, the effect is to segment the list into clusters; each cluster has just one out-

pointer (to the head of the next segment). For a tree, max size thresh is expected

to be much larger than the tree depth, so that each cluster encompasses a sub-tree

with many leaves; thus there will be considerably fewer out-pointers than objects. For

tables or lists where the individual elements contain many objects, Cluster Analysis

will do well as long as max size thresh is larger than the typical element size.

Some object graphs may contain large amounts of unchanging data, but have

topologies that prevent that data from being formed into large clusters. For example,

consider a large array that is occasionally updated, and whose elements are small and

read-only. The only way to form a cluster with more than one element is to include

the array object in the cluster, probably as the head. However, the program’s writes

to the array object may quickly force the cluster to be dissolved. If such situations

are common, Cluster Collection must treat them specially by splitting up the large

object; Section 4 describes this for Racket’s hash tables.
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Cluster Analysis’ adaptive choice of max size thresh responds to both program

writes and graph structure. If too many clusters are destroyed by writes, Cluster

Analysis will reduce max size thresh, so that each write dissolves a cluster contain-

ing fewer objects. If max size thresh shrinks too much, many clusters will have

out-pointer-to-object ratios exceeding out thresh, so that Cluster Analysis will itself

destroy them; this will prompt the next execution of Cluster Analysis to increase

max size thresh.

It is possible for there to be no good equilibrium size threshold: consider a program

whose data is a randomly connected graph, and that continuously adds and deletes

pointers between randomly selected objects. The program will modify a relatively

high fraction of unpredictable objects between collections, which means that clusters

must be small in order to escape dissolution. On the other hand, the object graph

is unlikely to contain “natural” clusters of small size with mostly internal pointers.

Clustered Collection won’t perform well for this program; it is targeted at programs

which leave large portions of the object graph unmodified, and which exhibit a degree

of natural clustering.

The Cluster Analysis strategy of omitting recently written objects is a prediction

that writes in the near future will affect the same objects that were written in the

recent past. If that prediction is largely accurate, Cluster Analysis will eventually

form clusters that aren’t written, and thus aren’t dissolved, and that therefore save

time during full collections. If the prediction isn’t accurate, perhaps because the

program has little write locality, many clusters will be dissolved and thus won’t be

skippable during full collections.

Some performance could be gained by sacrificing or deferring completeness. For

example, the Watcher could temporarily ignore writes that change one internal pointer

to another, which is safe but might delay freeing of the object referred to by the old

pointer.
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Chapter 4

Implementation

We implemented Clustered Collection as a modification to the precise collector in

Racket [11, 5] version v5.90.0.9. The Racket collector is a single-threaded generational

copying collector. It detects modifications to objects in the old generation by write-

protecting virtual memory pages.

Clustered Collection uses 24 bits in each object’s header; these bits are taken from

the 43 bits holding each object’s hash value. 20 of the bits hold the object’s cluster

number, one bit holds the “head” flag, one holds the “written” flag, and one holds

a “sink” flag. In all our experiments, this reduction in hash bits had no noticeable

effect.

The Watcher needs to discover which cluster (if any) owns the page a write fault

occurs on (it cannot easily tell from the faulting pointer where the containing object

starts). It does this with a table mapping address ranges to cluster numbers; this

table is implemented as an extension of the Racket collector’s “page table.”

In order to know exactly which objects the program has modified, Clustered Col-

lection needs object-granularity write barriers. Racket only detects which pages have

been written. Clustered Collection copies each page to a “shadow copy” on the page’s

first write fault after each collection. During the next full collection, each page and

its shadow copy are compared to find which objects were modified; each written ob-

ject may have its o.written flag set, and may dissolve the containing cluster. The

implementation maintains o.written for all objects, not just objects in clusters.
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Phase name Cluster analysis + GC Stock

Cluster ID assignment Yes No
Mark+Copy Yes Yes
Out pointer discovery Yes No
Pointer fix-up Yes Yes

Figure 4-1: The passes over the live data made by Cluster Analysis, compared with
the full collection passes made by Racket’s stock collector.

Racket implements hash tables as single vectors, so that a hash table with millions

of entries is implemented as a very large object. If not treated specially, such an

object, if written, might not be eligible for clustering; this in turn would likely mean

that each item in the hash table would have to be placed in its own small cluster. To

avoid this problem, Clustered Collection splits large hash tables, so that each “split”

and its contents can form a separate cluster. This allows reasonably large clusters,

while also causing a program write to dissolve only the cluster of the relevant split.

The Cluster Analysis implementation makes four passes over the objects, as shown

in Figure 4-1 (marking and copying are interleaved). Two of these passes are shared

with an associated full collection. Combining Cluster Analysis with a full collec-

tion saves work since both need to move live data, and thus both need to fix up

pointers. A more sophisticated implementation could assign cluster IDs during the

Mark+Copy phase, saving one pass; similarly, out-pointer discovery could be com-

bined with pointer fix-up.
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Chapter 5

Evaluation

This chapter measures how much Clustered Collection reduces full collection pause

times, how much time Cluster Analysis takes, how much other overhead Clustered

Collection imposes, and how sensitive it is to program writes.

The experiments run on a 3.47 GHz Intel Xeon X5960 with 96 GB of memory.

The mutator and the garbage collector are single-threaded and stay on the same core

throughout each experiment. min size thresh is 4096, max size thresh is initially

set to one sixteenth of the number of objects, out thresh is 2.5, sink thresh is 100,

and run thresh is 1.1.

5.1 The Hacker News Application

Hacker News is a social news aggregation web site. We use the publicly available

source1, which runs on Racket. Most activity consists of viewing comments on articles,

submitting articles, and submitting comments on both articles and other comments

(“news items”). Hacker News is sensitive to full collection pause times since user

requests cannot be served during a collection, resulting in user-perceivable delays of

multiple seconds. We modified the code to disable per-user request rate limiting and

to allow comments on news items of any age.

The application’s database is populated with the most recent 500,000 news items

1http://arclanguage.org/install
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from the real Hacker News2. The software keeps active news items in memory, and

the 500,000 consume approximately 3 GB of memory. A single large hash table called

items* contains an entry for each news item; each news item is implemented as a

small hash table. When a new news item is submitted, a new hash table is allocated

and populated with the item’s contents. A reference to the new hash table is then

inserted into items*. A new comment is added to a list of children attached to the

commented-on news item.

We drive Hacker News with a client program that runs on a different machine and

issues HTTP requests over a TCP connection. The client and server are connected

with gigabit Ethernet and the round-trip time is approximately 100 microseconds.

The client first discovers the set of 500 most recent news items; call them the “active

set”. The client then issues 600k requests, one after the other in a closed loop. 99% of

the requests are to read a randomly chosen item from the active set. 1% of requests

are to add a new comment to an item chosen randomly from the active set.

5.2 Effect of Cluster Collection on Pause Times

The purpose of the Hacker News experiment is to quantify the reduction in full collec-

tion pause times and the overhead of Clustered Collection on a realistic application.

We run Hacker News and the client program twice: once with the stock Racket

garbage collector and once with Clustered Collection.

Figure 5-1 shows the results. There is one numbered row for each full collection,

showing the wall-clock times for Clustered Collection and the stock collector. Collec-

tions before the first Cluster Analysis are omitted; they take an average of 1.6 seconds

for Clustered Collection, and 1.4 seconds for the stock collector. The client program

halts after collection 24. Cluster Analysis runs twice, at the points indicated by the

bold rows. The time shown on each Cluster Analysis row includes the time for the

associated full collection.

Figure 5-1 shows that Clustered Collection reduces full collection pause times by

2http://news.ycombinator.com
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n Cluster (s) Stock (s) Ratio

Cluster Analysis 11.7 - -
15 - 4.0 -
16 0.6 3.9 6.5
Cluster Analysis 3.1 - -
17 - 3.3 -
18 0.8 3.3 4.1
19 1.7 3.4 2.0
20 0.8 3.0 3.7
21 1.5 3.5 2.3
22 0.8 3.3 4.1
23 1.4 3.3 2.3
24 0.8 3.3 4.1

Figure 5-1: The pause times in seconds for full collections and Cluster Analysis (CA)
for the Hacker News application. Each Cluster Analysis time includes the time for the
associated full collection. The Ratio column shows Stock time divided by Clustered
Collection time. The average ratio (counting the first Cluster Analysis as 0.34) is 3.0.

Phase Cluster (s) Stock (s)

Set written bits 0.02 -
Mark sink objects 0.02 -
Mark+Copy 0.30 2.5
Pointer fix-up 0.20 1.4
Reset cluster marks 0.06 -

Figure 5-2: The most costly phases during full collection 16 in the Hacker News
experiment.

more than a factor of two, and often by a factor of four. Figure 5-2 shows that, as

expected, the biggest reduction is in the pointer tracing part (Mark+Copy) of full

collection, since Cluster Collection does not need to trace within clusters.

The first Cluster Analysis takes 11.7 seconds. This is longer than a full collection

due to the extra passes made by the Cluster Analysis implementation (see Figure 5-

3). On the other hand, the second Cluster Analysis takes only 3.1 seconds, and if the

client kept running subsequent ones would take about the same amount of time. The

subsequent Cluster Analyses are less expensive than the first because most of the live

data is still clustered, allowing Cluster Analysis to skip most objects.
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Cluster Stock
Cluster ID assignment 3.1 -
Mark+copy 4.3 2.6
Out pointer discovery 2.4 -
Pointer fix-up 1.9 1.4

Figure 5-3: Time in seconds for each phase of the first Hacker News Cluster Analysis;
the total is 11.7 seconds. The second column shows the times for the phases of the
full collection at the same point in the Stock experiment. Cluster Analysis copies
much more than the stock collector; the former copies all clustered data, while the
latter rarely copies old-generation objects.

A second Cluster Analyses is needed in Figure 5-1 because of program writes that

dissolve clusters, in particular writes caused by the client submitting new comments.

Adding a new comment to items* does not dissolve any clusters, but does cause a

new out-pointer to be added to the cluster of the affected split of items*. However,

adding the new comment to the commented-on item’s list of child comments does

cause dissolution of the commented-on item’s cluster. There are relatively few clusters

(see Figure 5-4), so even though the client program only comments on the active set,

this causes a significant fraction of clusters to be dissolved. As a result, a second

Cluster Analysis is needed at the start of full collection 17. At this point, the client

program has already commented on almost all of the active set, so that the hash tables

implementing those news items have o.written set. The second Cluster Analysis

omits those hash tables from its clusters, so that the client won’t cause the new set of

clusters to be dissolved. Thus after the second Cluster Analysis, no further analysis

is needed in order to maintain good pause time reduction.

The ratios in the last column of Figure 5-1 fluctuate because the two collectors

run at somewhat different times in the program execution, and thus with somewhat

different amounts and structure of live data.

Figure 5-5 summarizes some overall Clustered Collection costs. Despite reducing

full collection pauses, Clustered Collection causes the program to run slower overall,

mostly because young collections take about 34% longer. Young collections are slower

because Clustered Collection adds fields to the entries of Racket’s “page” table, which
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Total objects 44, 425, 018
Pct. of objects clustered 95%
Total clusters 415
Avg. object count per cluster 102, 110 ±139, 710
Clustered obj. lost due to writes 2, 643, 470
Out pointer per clustered object 0.003
Total sink objects 164

Figure 5-4: Statistics for the clusters found in the first Cluster Analysis in the Hacker
News experiment.

Stock Cluster

Runtime (s) 2685 2968
Requests/second 223 202
Avg. young GC pause 69± 41 ms 93± 47 ms
Peak mem. use 3,866 MB 6,734 MB

Figure 5-5: Run-time information for the Hacker News experiment.

is consulted for every object during collection; these fields increase the amount of data

that must be read from RAM. A second significant cost is the comparison of modified

pages with their shadow copies. Clustered Collection uses two times as much memory

as the stock collector while it is moving clustered objects to separate heap pages; old

copies of the evacuated objects cannot be freed until all cluster objects have been

copied. This momentary 2× memory increase is a limitation of the implementation

– a more sophisticated implementation would use compaction to evacuate objects to

private heap regions, requiring 1.3× memory overhead at most. Clustered Collection

also allocates shadow pages, though these do not affect its peak memory use.

To summarize, Clustered Collection reduces full collection pause times by an av-

erage of 3× for Hacker News, while decreasing overall throughput by about 10%.
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Old New Number Dissolved?

in pointer any 38, 606 Yes
nil/value nil/value 261, 634 No
nil/value in/out pointer 161, 623 No

Total 461, 863

Figure 5-6: The number of different kinds of program writes to clustered objects
during the Hacker News experiment. “In” pointer modifications force dissolution of
the containing cluster while other writes do not.

5.3 Tolerating Writes

Some program writes force Clustered Collection’s Watcher to dissolve the surrounding

cluster, while others can be tolerated without dissolution (see Section 3.7). This

chapter explores how effective the Watcher is at tolerating Hacker News’ program

writes.

We recorded the number of writes to clustered objects during the Hacker News

experiment; Figure 5-6 shows the results.

Only writes where the old value is an “in” pointer (pointing to an object in the

same cluster) force a cluster to be dissolved. These are rare in Hacker News: 38,606

out of 461,863 writes to a field in a clustered object alter an “in” pointer. These

writes occur when a new comment is added to a news item’s child comment list; the

16 clusters that suffer this kind of write are dissolved.

The other writes do not force dissolution. The most common writes were to change

a nil to an integer value, or change one integer to another (e.g., increment a counter).

Modifications that change a nil to an “in” or “out” pointer are also common with

a count of 161,623. Most of these occur when a new comment is added to items*.

If the new pointer is an “out” pointer, the write may cause a new entry to be added

to the cluster’s out-pointer set. The watcher ignores these modifications since they

cannot change any object’s liveness.

The Watcher significantly reduces the number of cluster-dissolving writes; only

8% of all modifications to clustered objects result in cluster dissolution.
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Figure 5-7: The effect on Cluster Analysis run-time of the fraction of objects still
in clusters since the previous Cluster Analysis. The time includes both the Cluster
Analysis and the associated full collection.

5.4 Later Cluster Analyses

Cluster Analyses after the first skip tracing within clusters that are still valid (haven’t

been dissolved). This chapter explores how much this technique speeds up Cluster

Analysis.

The experiment uses Hacker News with the same setup as in Section 5.2, except

that the client program comments on news items chosen randomly from the entire

loaded set of 500,000. The reason for this change is to allow control over the number

of clusters dissolved between one Cluster Analysis and the next: that number will be

close to the number of random comments created, since each comment will dissolve

the cluster that contains the commented-on news item. Each experiment loads the

500,000 news items, runs Cluster Analysis, lets the client program insert a given

number of comments, runs Cluster Analysis a second time, and reports the second

Cluster Analysis’ run time.

Figure 5-7 shows the results. The graph depicts the time taken in seconds for the
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second Cluster Analysis as a function of the fraction of live objects that are still in

non-dissolved clusters when the second Cluster Analysis runs. Cluster Analysis with

91% of the data still clustered is more than twice as fast as when only 17% of the data

is still clustered. The implication is that Clustered Collection will be most effective

for programs that leave much of their data untouched.

5.5 Effect of Cluster Out-Pointers

Clusters with fewer out pointers are likely to yield faster full collections. This exper-

iment explores the effect of out pointers on collection pause times.

The benchmark builds a binary tree of 32 million nodes. Every node in the tree

also contains a pointer that either references a special object, or is null. The special

object is not a member of any cluster. We vary the fraction of objects that refer to

the special object in order to vary the number of out pointers. Cluster Analysis finds

716 clusters on each run. The number of out pointers between clusters are few and

are included in the listed percentage of out pointers in the table.

Figure 5-8 presents the results. The break-even point occurs when about 40%

of objects have out-pointers; at that point, the cost of tracing the out-pointers out-

weighs the benefits of not tracing within the clusters.

5.6 k-Nearest Neighbors

The purpose of the k-Nearest Neighbors experiment is to evaluate the overhead and

pause time reductions achieved by Clustered Collection on a program whose live data

and operation are much different from Hacker News.

The k-Nearest Neighbors program used in the experiment was downloaded from

the Internet3. The program starts by loading a training data set and a target data

set to be classified from disk. Each data set is stored in a list. Each list item contains

five pointers: four reference a real number object and one references a string. There

3http://spin.atomicobject.com/2013/05/06/k-nearest-neighbor-racket/
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Figure 5-8: The effect of the fraction of objects that contain out-pointers on Clustered
Collection’s ability to reduce pause times.

are 3.2 million training items and 50 target items. The program classifies each target

item; each requires two full passes over the training data. The training and target

data sets are randomly generated. The training data uses about 1.25 GB of memory,

while the target data uses about 10 KB.

In the experiment the program is executed twice: once with Clustered Collection

and once with the stock collector. In both runs there are 33 full collections. Clustered

Collection performs one Cluster Analysis after the k-Nearest Neighbors program has

started classifying the target data. The pause times of every collection are recorded,

along with total application execution time and peak memory use.

Figure 5-9 shows the pause times of the Clustered and stock collections after

Cluster Analysis. The pause times of both collectors during execution of k-Nearest

Neighbors are shown in ascending order of pause time, because the Stock and Clus-

tered collections do not occur at the same points in the program. Sorting allows the

distributions of pause-times to be compared. The elbow in the graph is due to the

size of the live data fluctuating by 25% between collections. The average Clustered
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Figure 5-9: k-Nearest Neighbors full collection times for Clustered Collection (red)
and the stock collector (purple). The collections of each type are sorted in ascending
order by pause time. The average Clustered Collection takes 0.6 times as long as the
average stock collection.
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Stock Cluster

Total run-time 329 secs 339 secs
Avg. young GC pause 31± 17 ms 37± 25 ms
Young GC count 2287 2283
Peak mem. use 2603 MB 5360 MB

Figure 5-10: Run-time information for the k-Nearest Neighbors experiment.

Total objects 26, 161, 936
Pct. of objects clustered 88%
Total clusters 47
Avg. object count per cluster 492, 818± 109, 830
Clustered obj. lost due to writes 0
Out pointer per clustered object .1
Total sink objects 108

Figure 5-11: Statistics for the clusters found in the k-Nearest Neighbors experiment.

Collection takes 0.6 times as long as the average stock collection.

Figure 5-11 shows statistics about the clusters found by Cluster Analysis. Cluster

Analysis took 1.7 seconds to execute and the discovered clusters are equally-sized

segments of the training data and target data lists making up 88% of the programs

live data. No clusters were dissolved because the training and input data are read-

only. The clusters contain almost no “out” pointers because elements in the lists that

make up the live data are shallow.

The full collection pause times for the Clustered Collector average 0.6 times as

long as those of the stock collector. The cost, as shown in Figure 5-10, is that

overall program run-time increases from 329 seconds to 339 seconds. Thus Clustered

Collection reduces pause time significantly while increasing run-time by just 3%.
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Chapter 6

Conclusion

Clustered Collection significantly reduces full collection pause times for applications

with large amounts of mostly read-only data whose writes have locality in the object

graph. Collection pause times are reduced by finding clusters of objects that can

be skipped without sacrificing safety or completeness. Writes that may violate the

invariants required for safety or completeness are handled correctly. An evaluation

of Clustered Collection in Racket shows that pause times are significantly reduced at

some cost in memory and application throughput.
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